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Episode 1

Diffusion Models as Probabilistic Models in Path Space



We will discuss:

• Recap of Probability Theory and Probabilistic Models

• Generative Models and Diffusion Models

• Path Measure

• Probabilistic Inference with Path Measures: Control your Generation

• Application Demo & What’s Next?



Recap of Probability

• Random variable (RV):
A function mapping from a sample space e.g., {rain tmr, not rain tmr} to a 
measurable space e.g., {0, 1}.

• Probability mass function (discrete RV), e.g., 
𝑃 𝑋 = 1 = 0.7
𝑃 𝑋 = 0 = 0.3

• Probability density function (continuous RV), e.g., 
𝑁 𝑥 0, 1 ∝ exp(−𝑥2/2)



Recap of Probability

• Joint, Condition, marginal and Bayes’ Rule:

𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑝 𝑦 𝑥 = 𝑝 𝑦 𝑝 𝑥 𝑦

𝑝 𝑥 = න𝑝(𝑥, 𝑦)d𝑥



Recap of Probability

• Graphical Model:

Random Variable

Observed Random Variable

Dependency (conditional distribution)



Recap of Probability

• Graphical Model:

𝑧 𝑥



Recap of Probability

• Graphical Model:

𝑧 𝑥 𝑧 𝑥

𝑦



Recap of Probability

• Graphical Model:

𝑧 𝑥

𝑥𝑁 𝑥𝑁−1 𝑥0
…

𝑧 𝑥

𝑦



Generative Models and Diffusion Models

Generative Model: 𝑧 𝑥

Prior: 𝑝(𝑧)

Likelihood: 𝑝(𝑥|𝑧)

Posterior: 𝑝 𝑧 𝑥 ≈ 𝑞(𝑧|𝑥)

Variational Inference:
𝑞 𝑧 𝑥 𝑝 𝑥 ≈  𝑝(𝑧)𝑝(𝑥|𝑧)

𝑖. 𝑒. , 𝐷KL[𝑞(𝑧|𝑥)𝑝(𝑥) || 𝑝(𝑧)𝑝(𝑥|𝑧)]



Generative Models and Diffusion Models

Generative Model: 𝑧 𝑥

Prior: 𝑝(𝑧)

Likelihood: 𝑝(𝑥|𝑧)

Posterior: 𝑝 𝑧 𝑥 ≈ 𝑞(𝑧|𝑥)

Variational Inference:
𝑞 𝑧 𝑥 𝑝 𝑥 ≈  𝑝(𝑧)𝑝(𝑥|𝑧)

𝑖. 𝑒. , 𝐷KL[𝑞(𝑧|𝑥)𝑝(𝑥) || 𝑝(𝑧)𝑝(𝑥|𝑧)]

-> Evidence Lower Bound



Generative Models and Diffusion Models

Generative Model: 𝑧 𝑥

Prior: 𝑝(𝑧)

Likelihood: 𝑝(𝑥|𝑧)

Posterior: 𝑝 𝑧 𝑥 ≈ 𝑞(𝑧|𝑥)

Fix prior and likelihood, infer posterior

Fix prior, learn likelihood and posterior

Fix prior and posterior, learn likelihood



Generative Models and Diffusion Models

𝑥1 𝑥

Prior: 𝑝 𝑥2 𝑝(𝑥1|𝑥2)

Likelihood: 𝑝 𝑥 𝑥1, 𝑥2 = 𝑝(𝑥|𝑥1)

Posterior: 𝑝 𝑥1, 𝑥2 𝑥 ≈ 𝑞 𝑥1 𝑥 𝑞(𝑥2|𝑥1)

𝑥2

Variational Inference: 𝑞 𝑥1 𝑥 𝑞(𝑥2|𝑥1)𝑝 𝑥 ≈ 𝑝 𝑥2 𝑝 𝑥1 𝑥2 𝑝(𝑥|𝑥1)



Generative Models and Diffusion Models

[1] Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models." NeurIPS 2020.

Figure from [1].



Generative Models and Diffusion Models

Posterior (data -> noise):   𝑝 𝑥0 𝑞 𝑥1 𝑥0 𝑞 𝑥2 𝑥1 … 𝑞 𝑥𝑇 𝑥𝑇−1

𝑝 𝑥0 𝑞 𝑥1 𝑥0 𝑞 𝑥2 𝑥1
… 𝑞 𝑥𝑇 𝑥𝑇−1



Generative Models and Diffusion Models

Posterior (data -> noise):   𝑝 𝑥0 𝑞 𝑥1 𝑥0 𝑞 𝑥2 𝑥1 … 𝑞 𝑥𝑇 𝑥𝑇−1
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Generative Models and Diffusion Models
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Generative Models and Diffusion Models
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Generative Models and Diffusion Models
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Generative Models and Diffusion Models
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Generative Models and Diffusion Models
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Generative Models and Diffusion Models

Posterior (data -> noise):   𝑝 𝑥0 𝑞 𝑥1 𝑥0 𝑞 𝑥2 𝑥1 … 𝑞 𝑥𝑇 𝑥𝑇−1
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Generative Models and Diffusion Models

Posterior (data -> noise):   𝑝 𝑥0 𝑞 𝑥1 𝑥0 𝑞 𝑥2 𝑥1 … 𝑞 𝑥𝑇 𝑥𝑇−1
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Generative Models and Diffusion Models

Forward SDE (data -> noise): 𝑥𝑡′ = 𝑥𝑡 − 𝛽𝑡𝑥𝑡d𝑡 + 2𝛽𝑡d𝑡𝜖

𝑝 𝑥0 𝑞 𝑥1 𝑥0 𝑞 𝑥2 𝑥1
… 𝑞 𝑥𝑇 𝑥𝑇−1

Backward SDE (noise->data): 

                      𝑥𝑡′ = 𝑥𝑡 + [𝛽𝑡𝑥𝑡 + 2𝛽𝑡∇log𝑝𝑡(𝑥𝑡)] d𝑡 + 2𝛽𝑡d𝑡𝜖′

𝑝 𝑥𝑇 𝑝 𝑥𝑇−1 𝑥𝑇 𝑝 𝑥𝑇−2 𝑥𝑇−1 … 𝑝 𝑥0 𝑥1



Generative Models and Diffusion Models

[2] Song, Yang, et al. "Score-based generative modeling through stochastic differential equations." ICLR 2021.



Generative Models and Diffusion Models

Forward SDE (data -> noise): d𝑥𝑡 = −𝛽𝑡𝑥𝑡d𝑡 + 2𝛽𝑡 dW𝑡
Backward SDE (noise->data): 

                       d𝑥𝑡 =  [−𝛽𝑡𝑥𝑡 − 2𝛽𝑡∇log𝑝𝑡(𝑥𝑡)] d𝑡 + 2𝛽𝑡dW𝑡
−



Generative Models and Diffusion Models

Forward SDE (data -> noise): d𝑥𝑡 = −𝛽𝑡𝑥𝑡d𝑡 + 2𝛽𝑡 dW𝑡
Backward SDE (noise->data): 

                       d𝑥𝑡 =  [−𝛽𝑡𝑥𝑡 − 2𝛽𝑡∇log𝑝𝑡(𝑥𝑡)] d𝑡 + 2𝛽𝑡dW𝑡
−

The DDPM Kernel is one way to discretise the SDEs.



Generative Models and Diffusion Models

Forward SDE (data -> noise): d𝑥𝑡 = −𝛽𝑡𝑥𝑡d𝑡 + 2𝛽𝑡 dW𝑡
Backward SDE (noise->data): 

                       d𝑥𝑡 =  [−𝛽𝑡𝑥𝑡 − 2𝛽𝑡∇log𝑝𝑡(𝑥𝑡)] d𝑡 + 2𝛽𝑡dW𝑡
−

The DDPM Kernel is one way to discretise the SDEs.
Other options exist 



Generative Models and Diffusion Models

Forward SDE (data -> noise): d𝑥𝑡 = 𝑓𝑡(𝑥𝑡)d𝑡 + 𝜎𝑡 dW𝑡

Backward SDE (noise->data): d𝑥𝑡 = 𝑔𝑡(𝑥𝑡)d𝑡 + 𝜎𝑡 dW𝑡
−



Generative Models and Diffusion Models

Forward SDE (data -> noise): d𝑥𝑡 = 𝑓𝑡(𝑥𝑡)d𝑡 + 𝜎𝑡 dW𝑡

Backward SDE (noise->data): d𝑥𝑡 = 𝑔𝑡(𝑥𝑡)d𝑡 + 𝜎𝑡 dW𝑡
−

Euler–Maruyama discretisation

𝑥𝑡+1 = 𝑥𝑡 + 𝑓𝑡 𝑥𝑡 Δt + 𝜎𝑡Δ𝑡ϵ

𝑥𝑡−1 = 𝑥𝑡 − 𝑔𝑡 𝑥𝑡 Δt + 𝜎𝑡Δ𝑡ϵ′



Generative Models and Diffusion Models

Forward SDE (data -> noise): d𝑥𝑡 = 𝑓𝑡(𝑥𝑡)d𝑡 + 𝜎𝑡 dW𝑡

Backward SDE (noise->data): d𝑥𝑡 = 𝑔𝑡(𝑥𝑡)d𝑡 + 𝜎𝑡 dW𝑡
−

Posterior (data -> noise):   𝑝 𝑥0 𝑞 𝑥1 𝑥0 𝑞 𝑥2 𝑥1 … 𝑞 𝑥𝑇 𝑥𝑇−1

Generation (noise->data):    𝑝 𝑥𝑇 𝑝 𝑥𝑇−1 𝑥𝑇 … 𝑝 𝑥0 𝑥1



Generative Models and Diffusion Models
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𝑝 𝑥0 𝑞 𝑥1 𝑥0 𝑞 𝑥2 𝑥1 … 𝑞 𝑥𝑇 𝑥𝑇−1 ≈ 𝑝 𝑥𝑇 𝑝 𝑥𝑇−1 𝑥𝑇 … 𝑝 𝑥0 𝑥1



Generative Models and Diffusion Models

Forward SDE (data -> noise): d𝑥𝑡 = 𝑓𝑡(𝑥𝑡)d𝑡 + 𝜎𝑡 dW𝑡
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“Forward SDE and backward SDE define the same joint distribution”



Generative Models and Diffusion Models

Forward SDE (data -> noise): d𝑥𝑡 = 𝑓𝑡(𝑥𝑡)d𝑡 + 𝜎𝑡 dW𝑡

Backward SDE (noise->data): d𝑥𝑡 = 𝑔𝑡(𝑥𝑡)d𝑡 + 𝜎𝑡 dW𝑡
−

“Forward SDE and backward SDE define the same joint distribution”
      iff.

𝑔𝑡 = 𝑓𝑡 − 𝜎𝑡
2∇log𝑝𝑡

Nelson’s relation



Generative Models and Diffusion Models

[2] Song, Yang, et al. "Score-based generative modeling through stochastic differential equations." ICLR 2021.
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“Forward SDE and backward SDE define the same joint distribution”



Generative Models and Diffusion Models

Forward SDE (data -> noise): d𝑥𝑡 = 𝑓𝑡(𝑥𝑡)d𝑡 + 𝜎𝑡 dW𝑡

Backward SDE (noise->data): d𝑥𝑡 = 𝑔𝑡(𝑥𝑡)d𝑡 + 𝜎𝑡 dW𝑡
−

Posterior (data -> noise):   𝑝 𝑥0 𝑞 𝑥1 𝑥0 𝑞 𝑥2 𝑥1 … 𝑞 𝑥𝑇 𝑥𝑇−1

Generation (noise->data):    𝑝 𝑥𝑇 𝑝 𝑥𝑇−1 𝑥𝑇 … 𝑝 𝑥0 𝑥1

𝑝 𝑥0 𝑞 𝑥1 𝑥0 𝑞 𝑥2 𝑥1 … 𝑞 𝑥𝑇 𝑥𝑇−1 ≈ 𝑝 𝑥𝑇 𝑝 𝑥𝑇−1 𝑥𝑇 … 𝑝 𝑥0 𝑥1

“Forward SDE and backward SDE define the same joint distribution”

same joint distribution over path 𝑥0, 𝑥1, ⋯ , 𝑥𝑇



Diffusion Models and Path Measures

Forward SDE (data -> noise): d𝑥𝑡 = 𝑓𝑡(𝑥𝑡)d𝑡 + 𝜎𝑡 dW𝑡

Backward SDE (noise->data): d𝑥𝑡 = 𝑔𝑡(𝑥𝑡)d𝑡 + 𝜎𝑡 dW𝑡
−

Posterior (data -> noise):   𝑝 𝑥0 𝑞 𝑥1 𝑥0 𝑞 𝑥2 𝑥1 … 𝑞 𝑥𝑇 𝑥𝑇−1

Generation (noise->data):    𝑝 𝑥𝑇 𝑝 𝑥𝑇−1 𝑥𝑇 … 𝑝 𝑥0 𝑥1

𝑝 𝑥0 𝑞 𝑥1 𝑥0 𝑞 𝑥2 𝑥1 … 𝑞 𝑥𝑇 𝑥𝑇−1 ≈ 𝑝 𝑥𝑇 𝑝 𝑥𝑇−1 𝑥𝑇 … 𝑝 𝑥0 𝑥1

“Forward SDE and backward SDE define the same joint distribution”

same joint distribution over path 𝑥0, 𝑥1, ⋯ , 𝑥𝑇



Path Measures and Ito’s Calculus

Forward SDE (data -> noise): d𝑥𝑡 = 𝑓𝑡(𝑥𝑡)d𝑡 + 𝜎𝑡 dW𝑡

Backward SDE (noise->data): d𝑥𝑡 = 𝑔𝑡(𝑥𝑡)d𝑡 + 𝜎𝑡 dW𝑡
−

lim
𝑝0 𝑥0 𝑞 𝑥1 𝑥0 𝑞 𝑥2 𝑥1 …𝑞 𝑥𝑇 𝑥𝑇−1

𝑝𝑇 𝑥𝑇 𝑝 𝑥𝑇−1 𝑥𝑇 …𝑝 𝑥0 𝑥1

=
𝑝0 𝑋0

𝑝𝑇 𝑋1
exp න

𝑓𝑡(𝑋𝑡)

𝜎𝑡
2 ⋅ d𝑋𝑡 −

𝑓𝑡
2 𝑋𝑡

2𝜎𝑡
2 d𝑡 − න

𝑔𝑡 𝑋𝑡

𝜎𝑡
2 ⋅ d𝑋𝑡 +

𝑔𝑡
2(𝑋𝑡)

2𝜎𝑡
2 d𝑡

Backward Ito Integral

න 𝑎𝑡(𝑋𝑡) ⋅ d𝑋𝑡 = lim ෍ 𝑎𝑛+1 𝑋𝑛+1 ⋅ (𝑋𝑛+1 − 𝑋𝑛)



Episode 1

Diffusion Models are

Deep hierarchical VAEs

Reverse SDEs

Path Measure is just

Sequence of Gaussian densities (to the limit)

something involving Ito’s integral



More Math Details?



“Density Ratio” and Radon-Nikodym Derivative 

Don’t freak out about the name Radon-Nikodym Derivative

--- it’s just the “density ratio” 

Very informally, let 𝐏 and 𝐐 be two measures with density 𝑝 and 𝑞, their density ratio is the 
Radon-Nikodym Derivative (RND), denoted as

𝑝(𝑥)

𝑞(𝑥)
 =

d𝐏

d𝐐
(𝑥)

The density is essentially the RND w.r.t to Lebesgue measure

𝑝 𝑥 =
d𝐏

d𝜇
𝑥 , 𝑞(𝑥)  =

d𝐐

d𝜇
(𝑥)

 RND is helpful for spaces without Lebesgue measure 



Stochastic Differential Equations

 Forward SDE
d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡

 Backward SDE
d𝑋𝑡 = 𝑔 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡

 Intuitive understanding by Eular-Maruyama Discretisation:

 𝑋𝑛+1 − 𝑋𝑛 = 𝑓 𝑋𝑛, 𝑡𝑛 Δ𝑡 + 𝜎𝑛 Δ𝑡𝜖

 𝑋𝑛+1 − 𝑋𝑛 = 𝑔 𝑋𝑛+1, 𝑡𝑛+1 Δ𝑡 + 𝜎𝑛+1 Δ𝑡𝜖′



From Gaussian Density Ratio to Path RND

 𝑋𝑛+1 − 𝑋𝑛 = 𝑓 𝑋𝑛, 𝑡𝑛 Δ𝑡 + 𝜎𝑛 Δ𝑡𝜖

 for a discretised path sample {𝑋1, 𝑋2, … 𝑋𝑁}, what is its density?

 𝑝 𝑋𝑛+1|𝑋𝑛 = 𝑁(𝑋𝑛+1|𝑋𝑛 + 𝑓 𝑋𝑛, 𝑡𝑛 Δ𝑡, 𝜎𝑛
2Δ𝑡)

𝑝 𝑋1, 𝑋2, … 𝑋𝑁 = 𝑝 𝑋1 ∏𝑝 𝑋𝑛+1|𝑋𝑛

Transition density:

Full path density:



Now take a closer look at

𝑁(𝑋𝑛+1|𝑋𝑛 + 𝑓 𝑋𝑛, 𝑡𝑛 Δ𝑡, 𝜎𝑛
2Δ𝑡)

log𝑝 =
−(𝜎𝑛 Δ𝑡𝜖)2

2𝜎𝑛
2Δ𝑡

− log𝜎𝑛 −
1

2
logΔ𝑡 + 𝐶

density diverge when 𝛥𝑡 → 0 

From Gaussian Density Ratio to Path RND



But what if we have another SDE:

𝑝1 = 𝑁(𝑋𝑛+1|𝑋𝑛 + 𝑓 𝑋𝑛, 𝑡𝑛 Δ𝑡, 𝜎𝑛
2Δ𝑡)

𝑝2 = 𝑁(𝑋𝑛+1|𝑋𝑛 + ℎ 𝑋𝑛, 𝑡𝑛 Δ𝑡, 𝜎𝑛
2Δ𝑡)

log𝑝1 − log𝑝2 =
(2𝑋𝑛+1−2𝑋𝑛 − ℎΔ𝑡 − 𝑓Δ𝑡)(ℎΔ𝑡 − 𝑓Δ𝑡)

2𝜎𝑛
2Δ𝑡

From Gaussian Density Ratio to Path RND

density ratio did NOT diverge when 𝛥𝑡 → 0 



For solution 𝑋 to one SDE: d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡, 

we cannot define its density 𝑝 𝑋0 ∏𝑝 𝑋𝑡+d𝑡|𝑋𝑡

But with another SDE: d𝑋𝑡 = ℎ 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡, 

we can define density ratio (Radon-Nikodym Derivative) as a whole:

d𝐏

d𝐐
(𝑋)

From Gaussian Density Ratio to Path RND



Forward-forward RND and Girsanov

𝐏 ∶  d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋0 ∼ 𝑝0
𝐐 ∶  d𝑋𝑡 = ℎ 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋0 ∼ 𝑞0

d𝐏

d𝐐
𝑋 ≈

𝑝 𝑋0 ∏𝑁1(𝑋𝑛+1|𝑋𝑛)

𝑞 𝑋0 ∏𝑁2(𝑋𝑛+1|𝑋𝑛)



Forward-forward RND and Girsanov

𝐏 ∶  d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋0 ∼ 𝑝0
𝐐 ∶  d𝑋𝑡 = ℎ 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋0 ∼ 𝑞0

d𝐏

d𝐐
𝑋 =

𝑝 𝑋0

𝑞 𝑋0
exp න

𝑓𝑡(𝑋𝑡)

𝜎𝑡
2 ⋅ d𝑋𝑡 −

𝑓𝑡
2 𝑋𝑡

2𝜎𝑡
2 d𝑡 − න

𝑔𝑡 𝑋𝑡

𝜎𝑡
2 ⋅ d𝑋𝑡 +

𝑔𝑡
2(𝑋𝑡)

2𝜎𝑡
2 d𝑡

Initial density ratio
Forward Ito Integralන 𝑎𝑡(𝑋𝑡) ⋅ d𝑋𝑡 = lim ෍ 𝑎𝑛 𝑋𝑛 ⋅ (𝑋𝑛+1 − 𝑋𝑛)



Forward-backward RND

𝐏 ∶  d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋0 ∼ 𝑝0

𝐐 ∶  d𝑋𝑡 = 𝑔 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋1 ∼ 𝑞1

d𝐏

d𝐐
𝑋 ≈

𝑝0 𝑋0 ∏𝑁1(𝑋𝑛+1|𝑋𝑛)

𝑞1 𝑋1 ∏𝑁2(𝑋𝑛|𝑋𝑛+1)



Forward-backward RND

𝐏 ∶  d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋0 ∼ 𝑝0

𝐐 ∶  d𝑋𝑡 = 𝑔 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋1 ∼ 𝑞1

d𝐏

d𝐐
𝑋 =

𝑝0 𝑋0

𝑞1 𝑋1
exp න

𝑓𝑡(𝑋𝑡)

𝜎𝑡
2 ⋅ d𝑋𝑡 −

𝑓𝑡
2 𝑋𝑡

2𝜎𝑡
2 d𝑡 − න

𝑔𝑡 𝑋𝑡

𝜎𝑡
2 ⋅ d𝑋𝑡 +

𝑔𝑡
2(𝑋𝑡)

2𝜎𝑡
2 d𝑡

Backward Ito Integral

න 𝑎𝑡(𝑋𝑡) ⋅ d𝑋𝑡 = lim ෍ 𝑎𝑛+1 𝑋𝑛+1 ⋅ (𝑋𝑛+1 − 𝑋𝑛)

Initial densities



Forward-backward RND

𝐏 ∶  d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋0 ∼ 𝑝0

𝐐 ∶  d𝑋𝑡 = 𝑔 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋1 ∼ 𝑞1

d𝐏

d𝐐
𝑋 =

𝑝0 𝑋0

𝑞1 𝑋1
exp න

𝑓𝑡(𝑋𝑡)

𝜎𝑡
2 ⋅ d𝑋𝑡 −

𝑓𝑡
2 𝑋𝑡

2𝜎𝑡
2 d𝑡 − න

𝑔𝑡 𝑋𝑡

𝜎𝑡
2 ⋅ d𝑋𝑡 +

𝑔𝑡
2(𝑋𝑡)

2𝜎𝑡
2 d𝑡

lim
∏𝑁1(𝑋𝑛+1|𝑋𝑛)

∏𝑁2(𝑋𝑛|𝑋𝑛+1)

Initial densities



A Side Note on Stochastic Intergrals 

න 𝑎𝑡(𝑋𝑡) ⋅ d𝑋𝑡 = lim ෍ 𝑎𝑛+1 𝑋𝑛+1 ⋅ (𝑋𝑛+1 − 𝑋𝑛)

න 𝑎𝑡(𝑋𝑡) ⋅ d𝑋𝑡 = lim ෍ 𝑎𝑛 𝑋𝑛 ⋅ (𝑋𝑛+1 − 𝑋𝑛)

න 𝑎𝑡(𝑋𝑡) ∘ d𝑋𝑡 = lim ෍
𝑎𝑛 𝑋𝑛 + 𝑎𝑛+1 𝑋𝑛+1

2
⋅ (𝑋𝑛+1 − 𝑋𝑛)

Stratonovich integral

Ito backward integral

Ito forward integral



A Side Note on Stochastic Intergrals 

න 𝑎𝑡(𝑋𝑡) ⋅ d𝑋𝑡 = lim ෍ 𝑎𝑛+1 𝑋𝑛+1 ⋅ (𝑋𝑛+1 − 𝑋𝑛)

න 𝑎𝑡(𝑋𝑡) ⋅ d𝑋𝑡 = lim ෍ 𝑎𝑛 𝑋𝑛 ⋅ (𝑋𝑛+1 − 𝑋𝑛)

න 𝑎𝑡(𝑋𝑡) ⋅ d𝑋𝑡 − න 𝑎𝑡 𝑋𝑡 ⋅ d𝑋𝑡 = − න𝜎𝑡
2∇ ⋅ 𝑎𝑡d𝑡

Conversion rule:

Ito backward integral

Ito forward integral



Time-reversal and Nelson’s relation

𝐏 ∶  d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋0 ∼ 𝑝0

𝐐 ∶  d𝑋𝑡 = 𝑔 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋1 ∼ 𝑝1

𝐐 = 𝐏, i. e. ,
d𝐐

d𝐏
= 1

iff
𝑔 ⋅, 𝑡 = 𝑓 ⋅, 𝑡 − 𝜎𝑡

2∇log 𝑝𝑡(⋅)



Time-reversal and Nelson’s relation

𝐏 ∶  d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋0 ∼ 𝑝0

𝐐 ∶  d𝑋𝑡 = 𝑔 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋1 ∼ 𝑝1

𝐐 = 𝐏, i. e. ,
d𝐐

d𝐏
= 1

iff
𝑔 ⋅, 𝑡 = 𝑓 ⋅, 𝑡 − 𝜎𝑡

2∇log 𝑝𝑡(⋅)

e.g., 0 in VE process score



Episode 2

Control Generation with Sequential Monte Carlo in Path Space



Generation Control of Diffusion Models
Backward SDE (noise->data): 

                      𝑥𝑡′ = 𝑥𝑡 + [𝛽𝑡𝑥𝑡 + 2𝛽𝑡∇log𝑝𝑡(𝑥𝑡)] d𝑡 + 2𝛽𝑡d𝑡𝜖′

𝑝 𝑥𝑇 𝑝 𝑥𝑇−1 𝑥𝑇 𝑝 𝑥𝑇−2 𝑥𝑇−1 … 𝑝 𝑥0 𝑥1



Backward SDE (noise->data): 

                      𝑥𝑡′ = 𝑥𝑡 + [𝛽𝑡𝑥𝑡 + 2𝛽𝑡∇log𝑝𝑡(𝑥𝑡)] d𝑡 + 2𝛽𝑡d𝑡𝜖′

𝑝 𝑥𝑇 𝑝 𝑥𝑇−1 𝑥𝑇 𝑝 𝑥𝑇−2 𝑥𝑇−1 … 𝑝 𝑥0 𝑥1

What if I want to generate samples:
satisfying certain constraint
satisfying certain reward
composing properties of two diffusion models
has sharper distribution

…

Generation Control of Diffusion Models



Backward SDE (noise->data): 

                      𝑥𝑡′ = 𝑥𝑡 + [𝛽𝑡𝑥𝑡 + 2𝛽𝑡∇log𝑝𝑡(𝑥𝑡)] d𝑡 + 2𝛽𝑡d𝑡𝜖′

𝑝 𝑥𝑇 𝑝 𝑥𝑇−1 𝑥𝑇 𝑝 𝑥𝑇−2 𝑥𝑇−1 … 𝑝 𝑥0 𝑥1

What if I want to generate samples:
satisfying certain constraint      𝑞 𝑥0 ∝ 𝑝 𝑥0 1{𝑥0 ∈ constraint family}
satisfying certain reward     𝑞 𝑥0 ∝ 𝑝 𝑥0 exp(𝑟(𝑥0))
composing properties of two diffusion models 𝑞 𝑥0 ∝ 𝑝 𝑥0 𝑝′(𝑥0)
has sharper distribution 𝑞 𝑥0 ∝ 𝑝 𝑥0

𝛼

…

Generation Control of Diffusion Models



Generation Control of Diffusion Models
Backward SDE (noise->data): 

                      𝑥𝑡′ = 𝑥𝑡 + [𝛽𝑡𝑥𝑡 + 2𝛽𝑡∇log𝑝𝑡(𝑥𝑡)] d𝑡 + 2𝛽𝑡d𝑡𝜖′

Options:
- Generate 𝑁 samples, find the best set of samples



Generation Control of Diffusion Models
Backward SDE (noise->data): 

                      𝑥𝑡′ = 𝑥𝑡 + [𝛽𝑡𝑥𝑡 + 2𝛽𝑡∇log𝑝𝑡(𝑥𝑡)] d𝑡 + 2𝛽𝑡d𝑡𝜖′

Options:
- Generate 𝑁 samples, find the best set of samples
- Generate 𝑛 samples at each step, find the best set of samples for next step



Generation Control of Diffusion Models

Figure taken from

Singhal, Raghav, et al. "A general framework for inference-time scaling and steering of diffusion models." ICML 2025



Generation Control of Diffusion Models

Figure taken from

Singhal, Raghav, et al. "A general framework for inference-time scaling and steering of diffusion models." ICML 2025



Generation Control of Diffusion Models

Figure taken from

Singhal, Raghav, et al. "A general framework for inference-time scaling and steering of diffusion models." ICML 2025

How to pick 
the “best” set of samples?



We are able to draw sample from 𝑞(𝑥) 

But we want to draw sample from 𝑝(𝑥)

HOW?

Importance Sampling and Sequential Monte Carlo



We are able to draw sample from 𝑞(𝑥) --- proposal

But we want to draw sample from 𝑝(𝑥) --- target 

HOW?

Importance Sampling and Sequential Monte Carlo



We are able to draw sample from 𝑞(𝑥) --- proposal

But we want to draw sample from 𝑝(𝑥) --- target 

HOW?

𝐸𝑝 𝑓(𝑥) = 𝐸𝑞 𝑓 𝑥
𝑝(𝑥)

𝑞(𝑥)

Importance Sampling and Sequential Monte Carlo



We are able to draw sample from 𝑞(𝑥) --- proposal

But we want to draw sample from 𝑝(𝑥) --- target 

HOW?

𝐸𝑝 𝑓(𝑥) = 𝐸𝑞 𝑓 𝑥
𝑝(𝑥)

𝑞(𝑥)

Importance Sampling and Sequential Monte Carlo

Importance Weight



We are able to draw sample from 𝑞(𝑥) --- proposal

But we want to draw sample from 𝑝(𝑥) --- target 

HOW?

𝐸𝑝 𝑓(𝑥) = 𝐸𝑞 𝑓 𝑥
𝑝(𝑥)

𝑞(𝑥)

Importance Sampling and Sequential Monte Carlo

Importance Weight

Requirements on 𝑞(𝑥): can sample & eval density
Requirements on p(𝑥): can eval density

 



We are able to draw sample from 𝑞(𝑥) --- proposal

But we want to draw sample from 𝑝(𝑥) --- target 

1. Draw 𝑥1, 𝑥2, ⋯ , 𝑥𝑁 ∼ 𝑞

2. Calculate 
𝑝(𝑥)

𝑞(𝑥)
 for all of the 𝑁 samples

3. Draw 𝑖1, 𝑖2, ⋯ , 𝑖𝑀 ∼ Cat
𝑝 𝑥1

𝑞 𝑥1
,

𝑝(𝑥2)

𝑞(𝑥2)
, ⋯ ,

𝑝(𝑥𝑁)

𝑞(𝑥𝑁)

4. Return 𝑥𝑖1
, 𝑥𝑖2

, ⋯ , 𝑥𝑖𝑀

Importance Sampling and Sequential Monte Carlo



We are able to draw sample from 𝑞(𝑥) --- proposal

But we want to draw sample from 𝑝(𝑥) --- target 

1. 𝐃𝐫𝐚𝐰 𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝑵 ∼ 𝒒

2. Calculate 
𝑝(𝑥)

𝑞(𝑥)
 for all of the 𝑁 samples

3. Draw 𝑖1, 𝑖2, ⋯ , 𝑖𝑀 ∼ Cat
𝑝 𝑥1

𝑞 𝑥1
,

𝑝(𝑥2)

𝑞(𝑥2)
, ⋯ ,

𝑝(𝑥𝑁)

𝑞(𝑥𝑁)

4. Return 𝑥𝑖1
, 𝑥𝑖2

, ⋯ , 𝑥𝑖𝑀

Importance Sampling and Sequential Monte Carlo



We are able to draw sample from 𝑞(𝑥) --- proposal

But we want to draw sample from 𝑝(𝑥) --- target 

1. Draw 𝑥1, 𝑥2, ⋯ , 𝑥𝑁 ∼ 𝑞

2. Calculate 
𝒑(𝒙)

𝒒(𝒙)
 for all of the 𝑵 samples

3. Draw 𝑖1, 𝑖2, ⋯ , 𝑖𝑀 ∼ Cat
𝑝 𝑥1

𝑞 𝑥1
,

𝑝(𝑥2)

𝑞(𝑥2)
, ⋯ ,

𝑝(𝑥𝑁)

𝑞(𝑥𝑁)

4. Return 𝑥𝑖1
, 𝑥𝑖2

, ⋯ , 𝑥𝑖𝑀

Importance Sampling and Sequential Monte Carlo

𝑝(𝑥)

𝑞(𝑥)
 



We are able to draw sample from 𝑞(𝑥) --- proposal

But we want to draw sample from 𝑝(𝑥) --- target 

1. Draw 𝑥1, 𝑥2, ⋯ , 𝑥𝑁 ∼ 𝑞

2. Calculate 
𝑝(𝑥)

𝑞(𝑥)
 for all of the 𝑁 samples

3. Draw 𝒊𝟏, 𝒊𝟐, ⋯ , 𝒊𝑴 ∼ 𝑪𝒂𝒕
𝒑 𝒙𝟏

𝒒 𝒙𝟏
,

𝒑(𝒙𝟐)

𝒒(𝒙𝟐)
, ⋯ ,

𝒑(𝒙𝑵)

𝒒(𝒙𝑵)

4. Return 𝒙𝒊𝟏
, 𝒙𝒊𝟐

, ⋯ , 𝒙𝒊𝑴

Importance Sampling and Sequential Monte Carlo

𝑝(𝑥)

𝑞(𝑥)
 



We are able to draw sample from 𝑞(𝑥) --- proposal

But we want to draw sample from 𝑝(𝑥) --- target 

1. Draw 𝑥1, 𝑥2, ⋯ , 𝑥𝑁 ∼ 𝑞

2. Calculate 
𝑝(𝑥)

𝑞(𝑥)
 for all of the 𝑁 samples

3. Draw 𝑖1, 𝑖2, ⋯ , 𝑖𝑀 ∼ Cat
𝑝 𝑥1

𝑞 𝑥1
,

𝑝(𝑥2)

𝑞(𝑥2)
, ⋯ ,

𝑝(𝑥𝑁)

𝑞(𝑥𝑁)

4. Return 𝑥𝑖1
, 𝑥𝑖2

, ⋯ , 𝑥𝑖𝑀

Importance Sampling and Sequential Monte Carlo

𝑝(𝑥)

𝑞(𝑥)
 

𝐄𝐱𝐚𝐜𝐭 𝐰𝐡𝐞𝐧 𝑁 → ∞



We are able to draw sample from 𝑞(𝑥) --- proposal

But we want to draw sample from 𝑝(𝑥) --- target 

1. Draw 𝑥1, 𝑥2, ⋯ , 𝑥𝑁 ∼ 𝑞

2. Calculate 
𝑝(𝑥)

𝑞(𝑥)
 for all of the 𝑁 samples

3. Draw 𝑖1, 𝑖2, ⋯ , 𝑖𝑀 ∼ Cat
𝑝 𝑥1

𝑞 𝑥1
,

𝑝(𝑥2)

𝑞(𝑥2)
, ⋯ ,

𝑝(𝑥𝑁)

𝑞(𝑥𝑁)

4. Return 𝑥𝑖1
, 𝑥𝑖2

, ⋯ , 𝑥𝑖𝑀

Importance Sampling and Sequential Monte Carlo

𝑝(𝑥)

𝑞(𝑥)
 

Importance Re-sampling



We are able to draw sample from 𝑞(𝑥) --- proposal

But we want to draw sample from 𝑝(𝑥) --- target 

Then…

We are able to draw sample from 𝑞(𝑦|𝑥) --- proposal

But we want to draw sample from 𝑝(𝑦)    --- target 

Importance Sampling and Sequential Monte Carlo



We are able to draw sample from 𝑞(𝑥) --- proposal

But we want to draw sample from 𝑝(𝑥) --- target 

Then…

We are able to draw sample from 𝑞(𝑦|𝑥) --- proposal

But we want to draw sample from 𝑝(𝑦)    --- target 

Importance Sampling and Sequential Monte Carlo

Apply the previous procedure again!



We are able to draw sample from 𝑞(𝑥) --- proposal

But we want to draw sample from 𝑝(𝑥) --- target 

Then…

We are able to draw sample from 𝑞(𝑦|𝑥) --- proposal

But we want to draw sample from 𝑝(𝑦)    --- target 

Importance Sampling and Sequential Monte Carlo

Apply the previous procedure again!

1. Draw 𝑦1, 𝑦2, ⋯ , 𝑦𝑁 ∼ 𝑞(𝑦|𝑥)

2. Calculate 
𝑝 𝑦 𝑝(𝑥|𝑦)

𝑝 𝑥 𝑞(𝑦|𝑥)
 for all of the 𝑁 samples

3. Draw 𝑖1, 𝑖2, ⋯ , 𝑖𝑀 ∼ 𝐶𝑎𝑡
𝑝 𝑦1 𝑝(𝑥1|𝑦1)

𝑝 𝑥1 𝑞(𝑦1|𝑥1)
,

𝑝 𝑦2 𝑝(𝑥2|𝑦2)

𝑝 𝑥2 𝑞(𝑦2|𝑥2)
, ⋯ ,

𝑝 𝑦𝑁 𝑝(𝑥𝑁|𝑦𝑁)

𝑝 𝑥𝑁 𝑞(𝑦𝑁|𝑥𝑁)

4. Return 𝑦𝑖1
, 𝑦𝑖2

, 𝑦𝑖𝑀
.



We are able to draw sample from 𝑞(𝑥) --- proposal

But we want to draw sample from 𝑝(𝑥) --- target 

Then…

We are able to draw sample from 𝑞(𝑦|𝑥) --- proposal

But we want to draw sample from 𝑝(𝑦)    --- target 

Importance Sampling and Sequential Monte Carlo

Apply the previous procedure again!

1. Draw 𝑦1, 𝑦2, ⋯ , 𝑦𝑁 ∼ 𝑞(𝑦|𝑥)

2. Calculate 
𝑝 𝑦 𝒑(𝒙|𝒚)

𝑝 𝑥 𝑞(𝑦|𝑥)
 for all of the 𝑁 samples

3. Draw 𝑖1, 𝑖2, ⋯ , 𝑖𝑀 ∼ 𝐶𝑎𝑡
𝑝 𝑦1 𝑝(𝑥1|𝑦1)

𝑝 𝑥1 𝑞(𝑦1|𝑥1)
,

𝑝 𝑦2 𝑝(𝑥2|𝑦2)

𝑝 𝑥2 𝑞(𝑦2|𝑥2)
, ⋯ ,

𝑝 𝑦𝑁 𝑝(𝑥𝑁|𝑦𝑁)

𝑝 𝑥𝑁 𝑞(𝑦𝑁|𝑥𝑁)

4. Return 𝑦𝑖1
, 𝑦𝑖2

, 𝑦𝑖𝑀
.



Importance Sampling and Sequential Monte Carlo

Apply the previous procedure again and again and again!

Sequential Monte Carlo / Particle Filtering

We are able to draw sample from 𝑞 𝑥𝑁 , 𝑞 𝑥𝑁−1 𝑥𝑁 , … --- proposals

But we want to draw sample from 𝑝 𝑥𝑁 , 𝑝 𝑥𝑁−1 , … --- targets 



We are able to draw sample from 𝑞 𝑥𝑁 , 𝑞 𝑥𝑁−1 𝑥𝑁 , … --- proposals

But we want to draw sample from 𝑝 𝑥𝑁 , 𝑝 𝑥𝑁−1 , … --- targets 

Importance Sampling and Sequential Monte Carlo

Apply the previous procedure again and again and again!

Sequential Monte Carlo / Particle Filtering

Modified Diffusion process



We are able to draw sample from 𝑞 𝑥𝑁 , 𝑞 𝑥𝑁−1 𝑥𝑁 , … --- proposals

But we want to draw sample from 𝑝 𝑥𝑁 , 𝑝 𝑥𝑁−1 , … --- targets 

Importance Sampling and Sequential Monte Carlo

Apply the previous procedure again and again and again!

Sequential Monte Carlo / Particle Filtering
Modified 
Diffusion 
Marginal



What kind of control we want to impose to our diffusion model?      

       What does this mean in terms of density functions?

Generation Control of Diffusion Models



Generation Control of Diffusion Models

Diffusion Model 𝑝0

 Tempering: 𝑝0′ ∝ 𝑝0
𝛼

Molecular simulation

What kind of control we want to impose to our diffusion model?      

       What does this mean in terms of density functions?

Figure taken from: Karan, Aayush, and Yilun Du. "Reasoning with Sampling: Your Base Model is Smarter Than You Think." arXiv.



Generation Control of Diffusion Models

Diffusion Model 𝑝0

 Tempering: 𝑝0′ ∝ 𝑝0
𝛼

Molecular simulation

Alanine at 800K             Alanine at 300K

What kind of control we want to impose to our diffusion model?      

       What does this mean in terms of density functions?

Figure taken from: Karan, Aayush, and Yilun Du. "Reasoning with Sampling: Your Base Model is Smarter Than You Think." arXiv.



Diffusion Model 𝑝0

 Tempering: 𝑝0′ ∝ 𝑝0
𝛼

 Tilting: 𝑝0′ ∝ 𝑝0exp(𝑟0 𝑥0 )

Generation Control of Diffusion Models

Molecular simulation

Inpainting, infilling (motif-scaffolding), 
      reward-tilting, etc Reward

What kind of control we want to impose to our diffusion model?      

       What does this mean in terms of density functions?

Figure taken from: He, Jiajun, et al. "CREPE: Controlling Diffusion with Replica Exchange." arXiv.



Diffusion Model 𝑝0

 Tempering: 𝑝0′ ∝ 𝑝0
𝛼

 Tilting: 𝑝0′ ∝ 𝑝0exp(𝑟0 𝑥0 )

Generation Control of Diffusion Models

Molecular simulation

 Composition: 𝑝0′ ∝ 𝑝0
1

 
𝛼

 𝑝0
2

𝛽

Stitching / composing model properties
      e.g., ligand binding to two protein pockets

Inpainting, infilling (motif-scaffolding), 
      reward-tilting, etc 

What kind of control we want to impose to our diffusion model?      

       What does this mean in terms of density functions?



Diffusion Model 𝑝0

 Tempering: 𝑝0′ ∝ 𝑝0
𝛼

 Tilting: 𝑝0′ ∝ 𝑝0exp(𝑟0 𝑥0 )

Generation Control of Diffusion Models

Molecular simulation

 Composition: 𝑝0′ ∝ 𝑝0
1

 
𝛼

 𝑝0
2

𝛽

Stitching / composing model properties
      e.g., ligand binding to two protein pockets

What kind of control we want to impose to our diffusion model?      

       What does this mean in terms of density functions?

He, Jiajun, et al. "RNE: a plug-and-play framework for diffusion density estimation and inference-time control." arXiv.
Skreta, Marta, et al. "Feynman-kac correctors in diffusion: Annealing, guidance, and product of experts." ICML 2025.



Diffusion Model 𝑝0

 Tempering: 𝑝0′ ∝ 𝑝0
𝛼

 Tilting: 𝑝0′ ∝ 𝑝0exp(𝑟0 𝑥0 )

Generation Control of Diffusion Models

Molecular simulation

 Composition: 𝑝0′ ∝ 𝑝0
1

 
𝛼

 𝑝0
2

𝛽

Stitching / composing model properties
      e.g., ligand binding to two protein pockets

Inpainting, infilling (motif-scaffolding), 
      reward-tilting, etc 

What kind of control we want to impose to our diffusion model?      

       What does this mean in terms of density functions?



Sequential Monte Carlo Weight Calculation

Diffusion model generates 𝑝𝑇 𝑥𝑇 , 𝑝𝑇−1 𝑥𝑇−1 , … , 𝑝0 𝑥0

with denoising kernels 𝑝 𝑥𝑇−1 𝑥𝑇 , 𝑝 𝑥𝑇−2 𝑥𝑇−1 , … , 𝑝 𝑥0 𝑥1

We want to generate from 𝑝𝑇′ 𝑥𝑇 , 𝑝𝑇−1′ 𝑥𝑇−1 , … , 𝑝0′ 𝑥0

with proposal kernels 𝑝′ 𝑥𝑇−1 𝑥𝑇 , 𝑝′ 𝑥𝑇−2 𝑥𝑇−1 , … , 𝑝′ 𝑥0 𝑥1

𝑝′ 𝑥𝑡−1 𝑝(𝑥𝑡|𝑥𝑡−1)

𝑝′ 𝑥𝑡 𝑝′(𝑥𝑡−1|𝑥𝑡)



More Math?



Forward-backward RND

𝐏 ∶  d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋0 ∼ 𝑝0

𝐐 ∶  d𝑋𝑡 = 𝑔 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋1 ∼ 𝑞1

d𝐏

d𝐐
𝑋 =

𝑝0 𝑋0

𝑞1 𝑋1
exp න

𝑓𝑡(𝑋𝑡)

𝜎𝑡
2 ⋅ d𝑋𝑡 −

𝑓𝑡
2 𝑋𝑡

2𝜎𝑡
2 d𝑡 − න

𝑔𝑡 𝑋𝑡

𝜎𝑡
2 ⋅ d𝑋𝑡 +

𝑔𝑡
2(𝑋𝑡)

2𝜎𝑡
2 d𝑡

lim
∏𝑁1(𝑋𝑛+1|𝑋𝑛)

∏𝑁2(𝑋𝑛|𝑋𝑛+1)

Initial densities

For simplicity, we hereafter call

= exp − න
𝑓𝑡 𝑋𝑡

𝜎𝑡
2 ⋅ d𝑋𝑡 +

𝑓𝑡
2 𝑋𝑡

2𝜎𝑡
2 d𝑡 + න

𝑔𝑡 𝑋𝑡

𝜎𝑡
2 ⋅ d𝑋𝑡 −

𝑔𝑡
2 𝑋𝑡

2𝜎𝑡
2 d𝑡𝑅𝑓

𝑔
(𝑋)



Forward-backward RND

𝐏 ∶  d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋0 ∼ 𝑝0

𝐐 ∶  d𝑋𝑡 = 𝑔 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋1 ∼ 𝑞1

d𝐏

d𝐐
𝑋 =

𝑝0 𝑋0

𝑞1 𝑋1
exp න

𝑓𝑡(𝑋𝑡)

𝜎𝑡
2 ⋅ d𝑋𝑡 −

𝑓𝑡
2 𝑋𝑡

2𝜎𝑡
2 d𝑡 − න

𝑔𝑡 𝑋𝑡

𝜎𝑡
2 ⋅ d𝑋𝑡 +

𝑔𝑡
2(𝑋𝑡)

2𝜎𝑡
2 d𝑡

lim
∏𝑁1(𝑋𝑛+1|𝑋𝑛)

∏𝑁2(𝑋𝑛|𝑋𝑛+1)

Initial densities

For simplicity, we hereafter call

𝑅𝑓
𝑔

(𝑋) =  lim
∏𝑁𝑔(𝑋𝑛|𝑋𝑛+1)

∏𝑁ℎ(𝑋𝑛+1|𝑋𝑛)



 Strategy:
• Choose a heuristic guidance process;
• Define a sequence of intermediate target densities 𝑞𝑡 ∝ 𝑝𝑡(𝑥𝑡)exp(𝑟𝑡(𝑥𝑡));
• Do Sequential Monte Carlo (SMC)! 

We already learned about this pipeline from Raghav (Feynman-Kac Steering); Marta 
(Feynman-Kac Corrector); Luhuan (RDSMC) during the talks

Example: Diffusion Inference-time Steering with Path RND

Problem Setup:

Given a pretrained model for 𝑝0, generate samples ∼ 𝑝0(𝑥)exp(𝑟(𝑥))
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• Do importance-resampling to move samples at 𝑞𝑡′  to 𝑞𝑡 (𝑡 < 𝑡′)
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Example: Diffusion Inference-time Steering with Path RND

have 𝑥 ∼ 𝑞𝜏′, how to obtain exact sample 𝑥 ∼ 𝑞𝜏



• Choose a heuristic guidance process;

• Define a sequence of intermediate target densities 𝑞𝑡 ∝  𝑝𝑡(𝑥𝑡)exp(𝑟𝑡(𝑥𝑡));

• Do importance-resampling

Example: Diffusion Inference-time Steering with Path RND

have 𝑥 ∼ 𝑞𝜏′, how to obtain exact sample 𝑥 ∼ 𝑞𝜏



• Choose a heuristic guidance process;

• Define a sequence of intermediate target densities 𝑞𝑡 ∝  𝑝𝑡(𝑥𝑡)exp(𝑟𝑡(𝑥𝑡));

• Do importance-resampling

Example: Diffusion Inference-time Steering with Path RND

d𝑋𝑡 = (score + guidance) d𝑡 + 𝜎𝑡d𝑊𝑡,  𝑋𝜏′ ∼ 𝑞𝜏′

have 𝑥 ∼ 𝑞𝜏′, how to obtain exact sample 𝑥 ∼ 𝑞𝜏



• Choose a heuristic guidance process;

• Define a sequence of intermediate target densities 𝑞𝑡 ∝  𝑝𝑡(𝑥𝑡)exp(𝑟𝑡(𝑥𝑡));

• Do importance-resampling

Example: Diffusion Inference-time Steering with Path RND

d𝑋𝑡 = 𝑎 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡,  𝑋𝜏′ ∼ 𝑞𝜏′

have 𝑥 ∼ 𝑞𝜏′, how to obtain exact sample 𝑥 ∼ 𝑞𝜏

“proposal”
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𝑤 ∝
target

proposal



• Choose a heuristic guidance process;

• Define a sequence of intermediate target densities 𝑞𝑡 ∝  𝑝𝑡(𝑥𝑡)exp(𝑟𝑡(𝑥𝑡));

• Do importance-resampling

Example: Diffusion Inference-time Steering with Path RND

d𝑋𝑡 = 𝑎 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡,  𝑋𝜏′ ∼ 𝑞𝜏′

have 𝑥 ∼ 𝑞𝜏′, how to obtain exact sample 𝑥 ∼ 𝑞𝜏

“proposal”

“target”? d𝑋𝑡 = 𝑏 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡,  𝑋𝜏 ∼ 𝑞𝜏 

𝑤 ∝
target

𝑞𝜏′ 𝑋𝜏′ ∏𝑁𝑎(𝑋𝑛|𝑋𝑛+1)



• Choose a heuristic guidance process;

• Define a sequence of intermediate target densities 𝑞𝑡 ∝  𝑝𝑡(𝑥𝑡)exp(𝑟𝑡(𝑥𝑡));

• Do importance-resampling

Example: Diffusion Inference-time Steering with Path RND

d𝑋𝑡 = 𝑎 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡,  𝑋𝜏′ ∼ 𝑞𝜏′

have 𝑥 ∼ 𝑞𝜏′, how to obtain exact sample 𝑥 ∼ 𝑞𝜏

“proposal”

“target”? d𝑋𝑡 = 𝑏 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡,  𝑋𝜏 ∼ 𝑞𝜏 

𝑤 ∝
𝑞𝜏 𝑋𝜏 ∏𝑁𝑏(𝑋𝑛+1|𝑋𝑛)

𝑞𝜏′ 𝑋𝜏′ ∏𝑁𝑎(𝑋𝑛|𝑋𝑛+1)



• Choose a heuristic guidance process;

• Define a sequence of intermediate target densities 𝑞𝑡 ∝  𝑝𝑡(𝑥𝑡)exp(𝑟𝑡(𝑥𝑡));

• Do importance-resampling

Example: Diffusion Inference-time Steering with Path RND

d𝑋𝑡 = 𝑎 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡,  𝑋𝜏′ ∼ 𝑞𝜏′

have 𝑥 ∼ 𝑞𝜏′, how to obtain exact sample 𝑥 ∼ 𝑞𝜏

“proposal”

“target”? d𝑋𝑡 = 𝑏 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡,  𝑋𝜏 ∼ 𝑞𝜏 

𝑤 ∝
𝑞𝜏 𝑋𝜏 ∏𝑁𝑏(𝑋𝑛+1|𝑋𝑛)

𝑞𝜏′ 𝑋𝜏′ ∏𝑁𝑎(𝑋𝑛|𝑋𝑛+1)



• Choose a heuristic guidance process;

• Define a sequence of intermediate target densities 𝑞𝑡 ∝  𝑝𝑡(𝑥𝑡)exp(𝑟𝑡(𝑥𝑡));

• Do importance-resampling

Example: Diffusion Inference-time Steering with Path RND

d𝑋𝑡 = 𝑎 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡,  𝑋𝜏′ ∼ 𝑞𝜏′

have 𝑥 ∼ 𝑞𝜏′, how to obtain exact sample 𝑥 ∼ 𝑞𝜏

“proposal”

“target”? d𝑋𝑡 = 𝑏 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡,  𝑋𝜏 ∼ 𝑞𝜏 

𝑤 ∝
𝑞𝜏 𝑋𝜏 ∏𝑁𝑏(𝑋𝑛+1|𝑋𝑛)

𝑞𝜏′ 𝑋𝜏′ ∏𝑁𝑎(𝑋𝑛|𝑋𝑛+1)

𝑅𝑓
𝑔

(𝑋)

=  lim
∏𝑁𝑔(𝑋𝑛|𝑋𝑛+1)

∏𝑁ℎ(𝑋𝑛+1|𝑋𝑛)



• Choose a heuristic guidance process;

• Define a sequence of intermediate target densities 𝑞𝑡 ∝  𝑝𝑡(𝑥𝑡)exp(𝑟𝑡(𝑥𝑡));

• Do importance-resampling

Example: Diffusion Inference-time Steering with Path RND

d𝑋𝑡 = 𝑎 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡,  𝑋𝜏′ ∼ 𝑞𝜏′

have 𝑥 ∼ 𝑞𝜏′, how to obtain exact sample 𝑥 ∼ 𝑞𝜏

“proposal”

“target”? d𝑋𝑡 = 𝑏 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡,  𝑋𝜏 ∼ 𝑞𝜏 

𝑤 ∝
𝑞𝜏 𝑋𝜏 ∏𝑁𝑏(𝑋𝑛+1|𝑋𝑛)

𝑞𝜏′ 𝑋𝜏′ ∏𝑁𝑎(𝑋𝑛|𝑋𝑛+1)

1/𝑅𝑏
𝑎(𝑋[𝜏,𝜏′])



• Choose a heuristic guidance process;

• Define a sequence of intermediate target densities 𝑞𝑡 ∝  𝑝𝑡(𝑥𝑡)exp(𝑟𝑡(𝑥𝑡));

• Do importance-resampling

Example: Diffusion Inference-time Steering with Path RND

d𝑋𝑡 = 𝑎 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡,  𝑋𝜏′ ∼ 𝑞𝜏′

have 𝑥 ∼ 𝑞𝜏′, how to obtain exact sample 𝑥 ∼ 𝑞𝜏

“proposal”

“target”? d𝑋𝑡 = 𝑏 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡,  𝑋𝜏 ∼ 𝑞𝜏 

𝑤 ∝
𝑞𝜏 𝑋𝜏

𝑞𝜏′ 𝑋𝜏′
1/𝑅𝑏

𝑎(𝑋[𝜏,𝜏′])



• Choose a heuristic guidance process;

• Define a sequence of intermediate target densities 𝑞𝑡 ∝  𝑝𝑡(𝑥𝑡)exp(𝑟𝑡(𝑥𝑡));

• Do importance-resampling

Example: Diffusion Inference-time Steering with Path RND

d𝑋𝑡 = 𝑎 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡,  𝑋𝜏′ ∼ 𝑞𝜏′

have 𝑥 ∼ 𝑞𝜏′, how to obtain exact sample 𝑥 ∼ 𝑞𝜏

“proposal”

“target”? d𝑋𝑡 = 𝑏 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡,  𝑋𝜏 ∼ 𝑞𝜏 

𝑤 ∝
𝑝𝜏(𝑥𝜏)exp(𝑟𝜏(𝑥𝜏))

𝑝𝜏′(𝑥𝜏′)exp(𝑟𝜏′(𝑥𝜏′))
1/𝑅𝑏

𝑎(𝑋[𝜏,𝜏′])



• Choose a heuristic guidance process;

• Define a sequence of intermediate target densities 𝑞𝑡 ∝  𝑝𝑡(𝑥𝑡)exp(𝑟𝑡(𝑥𝑡));

• Do importance-resampling

Example: Diffusion Inference-time Steering with Path RND

d𝑋𝑡 = 𝑎 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡,  𝑋𝜏′ ∼ 𝑞𝜏′

have 𝑥 ∼ 𝑞𝜏′, how to obtain exact sample 𝑥 ∼ 𝑞𝜏

“proposal”

“target”? d𝑋𝑡 = 𝑏 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡,  𝑋𝜏 ∼ 𝑞𝜏 

𝑤 ∝
𝑝𝜏(𝑥𝜏)exp(𝑟𝜏(𝑥𝜏))

𝑝𝜏′(𝑥𝜏′)exp(𝑟𝜏′(𝑥𝜏′))
1/𝑅𝑏

𝑎(𝑋[𝜏,𝜏′])

?



• Choose a heuristic guidance process;

• Define a sequence of intermediate target densities 𝑞𝑡 ∝  𝑝𝑡(𝑥𝑡)exp(𝑟𝑡(𝑥𝑡));

• Do importance-resampling

Example: Diffusion Inference-time Steering with Path RND

d𝑋𝑡 = 𝑎 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡,  𝑋𝜏′ ∼ 𝑞𝜏′

have 𝑥 ∼ 𝑞𝜏′, how to obtain exact sample 𝑥 ∼ 𝑞𝜏

“proposal”

“target”? d𝑋𝑡 = 𝑏 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡,  𝑋𝜏 ∼ 𝑞𝜏 

𝑤 ∝
𝑝𝜏(𝑥𝜏)exp(𝑟𝜏(𝑥𝜏))

𝑝𝜏′(𝑥𝜏′)exp(𝑟𝜏′(𝑥𝜏′))
1/𝑅𝑏

𝑎(𝑋[𝜏,𝜏′])

?

𝐏:  d𝑋𝑡 = diffusion denoising d𝑡 + 𝜎𝑡d𝑊𝑡 𝑋𝜏′ ∼ 𝑝𝜏′  𝑡 ∈ [𝜏, 𝜏′]

𝑝𝜏 𝑋𝜏

𝑝𝜏′  (𝑋𝜏′)
= ?



• Choose a heuristic guidance process;

• Define a sequence of intermediate target densities 𝑞𝑡 ∝  𝑝𝑡(𝑥𝑡)exp(𝑟𝑡(𝑥𝑡));

• Do importance-resampling

Example: Diffusion Inference-time Steering with Path RND

d𝑋𝑡 = 𝑎 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡,  𝑋𝜏′ ∼ 𝑞𝜏′

have 𝑥 ∼ 𝑞𝜏′, how to obtain exact sample 𝑥 ∼ 𝑞𝜏

“proposal”

“target”? d𝑋𝑡 = 𝑏 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡,  𝑋𝜏 ∼ 𝑞𝜏 

𝑤 ∝
𝑝𝜏(𝑥𝜏)exp(𝑟𝜏(𝑥𝜏))

𝑝𝜏′(𝑥𝜏′)exp(𝑟𝜏′(𝑥𝜏′))
1/𝑅𝑏

𝑎(𝑋[𝜏,𝜏′])

?

𝐏:  d𝑋𝑡 = diffusion denoising d𝑡 + 𝜎𝑡d𝑊𝑡 𝑋𝜏′ ∼ 𝑝𝜏′  𝑡 ∈ [𝜏, 𝜏′]

𝑝𝜏 𝑋𝜏

𝑝𝜏′  (𝑋𝜏′)
= ?

𝐏:  d𝑋𝑡 = diffusion noising d𝑡 + 𝜎𝑡d𝑊𝑡  𝑋𝜏 ∼ 𝑝𝜏 𝑡 ∈ [𝜏, 𝜏′]



• Choose a heuristic guidance process;

• Define a sequence of intermediate target densities 𝑞𝑡 ∝  𝑝𝑡(𝑥𝑡)exp(𝑟𝑡(𝑥𝑡));

• Do importance-resampling

Example: Diffusion Inference-time Steering with Path RND

d𝑋𝑡 = 𝑎 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡,  𝑋𝜏′ ∼ 𝑞𝜏′

have 𝑥 ∼ 𝑞𝜏′, how to obtain exact sample 𝑥 ∼ 𝑞𝜏

“proposal”

“target”? d𝑋𝑡 = 𝑏 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡,  𝑋𝜏 ∼ 𝑞𝜏 

𝑤 ∝
𝑝𝜏(𝑥𝜏)exp(𝑟𝜏(𝑥𝜏))

𝑝𝜏′(𝑥𝜏′)exp(𝑟𝜏′(𝑥𝜏′))
1/𝑅𝑏

𝑎(𝑋[𝜏,𝜏′])

?

𝐏:  d𝑋𝑡 = 𝑔(𝑋𝑡 , 𝑡)d𝑡 + 𝜎𝑡d𝑊𝑡 𝑋𝜏′ ∼ 𝑝𝜏′  𝑡 ∈ [𝜏, 𝜏′]

𝑝𝜏 𝑋𝜏

𝑝𝜏′  (𝑋𝜏′)
= ?

𝐏:  d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡  𝑋𝜏 ∼ 𝑝𝜏 𝑡 ∈ [𝜏, 𝜏′]



• Choose a heuristic guidance process;

• Define a sequence of intermediate target densities 𝑞𝑡 ∝  𝑝𝑡(𝑥𝑡)exp(𝑟𝑡(𝑥𝑡));

• Do importance-resampling

Example: Diffusion Inference-time Steering with Path RND

d𝑋𝑡 = 𝑎 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡,  𝑋𝜏′ ∼ 𝑞𝜏′

have 𝑥 ∼ 𝑞𝜏′, how to obtain exact sample 𝑥 ∼ 𝑞𝜏

“proposal”

“target”? d𝑋𝑡 = 𝑏 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡,  𝑋𝜏 ∼ 𝑞𝜏 

𝑤 ∝
𝑝𝜏(𝑥𝜏)exp(𝑟𝜏(𝑥𝜏))

𝑝𝜏′(𝑥𝜏′)exp(𝑟𝜏′(𝑥𝜏′))
1/𝑅𝑏

𝑎(𝑋[𝜏,𝜏′])

?

𝐏:  d𝑋𝑡 = 𝑔(𝑋𝑡 , 𝑡)d𝑡 + 𝜎𝑡d𝑊𝑡 𝑋𝜏′ ∼ 𝑝𝜏′  𝑡 ∈ [𝜏, 𝜏′]

𝑝𝜏 𝑋𝜏

𝑝𝜏′  (𝑋𝜏′)
= 𝑅𝑓

𝑔
(𝑋 𝜏,𝜏′ )

𝐏:  d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡  𝑋𝜏 ∼ 𝑝𝜏 𝑡 ∈ [𝜏, 𝜏′]

d𝐏

d𝐏
𝑋[𝜏,𝜏′] = 1

           



• Choose a heuristic guidance process;

• Define a sequence of intermediate target densities 𝑞𝑡 ∝  𝑝𝑡(𝑥𝑡)exp(𝑟𝑡(𝑥𝑡));

• Do importance-resampling

Example: Diffusion Inference-time Steering with Path RND

d𝑋𝑡 = 𝑎 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡,  𝑋𝜏′ ∼ 𝑞𝜏′

have 𝑥 ∼ 𝑞𝜏′, how to obtain exact sample 𝑥 ∼ 𝑞𝜏

“proposal”

“target”? d𝑋𝑡 = 𝑏 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡,  𝑋𝜏 ∼ 𝑞𝜏 

𝑤 ∝ 𝑅𝑓
𝑔

(𝑋 𝜏,𝜏′ )
exp(𝑟𝜏(𝑥𝜏))

exp(𝑟𝜏′(𝑥𝜏′))
1/𝑅𝑏

𝑎(𝑋[𝜏,𝜏′])

𝐏:  d𝑋𝑡 = 𝑔(𝑋𝑡 , 𝑡)d𝑡 + 𝜎𝑡d𝑊𝑡 𝑋𝜏′ ∼ 𝑝𝜏′  𝑡 ∈ [𝜏, 𝜏′]

𝑝𝜏 𝑋𝜏

𝑝𝜏′  (𝑋𝜏′)
= 𝑅𝑓

𝑔
(𝑋 𝜏,𝜏′ )

𝐏:  d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡  𝑋𝜏 ∼ 𝑝𝜏 𝑡 ∈ [𝜏, 𝜏′]

d𝐏

d𝐏
𝑋[𝜏,𝜏′] = 1

           



• Choose a heuristic guidance process;

• Define a sequence of intermediate target densities 𝑞𝑡 ∝  𝑝𝑡(𝑥𝑡)exp(𝑟𝑡(𝑥𝑡));

• Do importance-resampling

Example: Diffusion Inference-time Steering with Path RND

d𝑋𝑡 = 𝑎 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡,  𝑋𝜏′ ∼ 𝑞𝜏′“proposal”

“target” d𝑋𝑡 = 𝑏 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡,  𝑋𝜏 ∼ 𝑞𝜏 

𝑤 ∝ 𝑅𝑓
𝑔

(𝑋 𝜏,𝜏′ )
exp(𝑟𝜏(𝑥𝜏))

exp(𝑟𝜏′(𝑥𝜏′))
1/𝑅𝑏

𝑎(𝑋[𝜏,𝜏′])



Example: Diffusion Inference-time Steering with Path RND

𝑤 ∝ 𝑅𝑓
𝑔

(𝑋 𝜏,𝜏′ )
exp(𝑟𝜏(𝑥𝜏))

exp(𝑟𝜏′(𝑥𝜏′))
1/𝑅𝑏

𝑎(𝑋[𝜏,𝜏′])

Summary: 
 Define proposal and target process

 Define intermediate densities 𝑞𝑡 (by steering diffusion’s 𝑝𝑡)

 Replace ratio between 𝑝𝑡 by forward-backward kernel ratio 𝑅



Example: Diffusion Inference-time Steering with Path RND

Summary: 
 Define proposal and target process

 Define intermediate densities 𝑞𝑡 (by steering diffusion’s 𝑝𝑡)

 Replace ratio between 𝑝𝑡 by forward-backward kernel ratio 𝑅

𝑤 ∝ 𝑅𝑓
𝑔

(𝑋 𝜏,𝜏′ )
exp(𝑟𝜏(𝑥𝜏))

exp(𝑟𝜏′(𝑥𝜏′))
1/𝑅𝑏

𝑎(𝑋[𝜏,𝜏′])



Example: Diffusion Inference-time Steering with Path RND

Summary: 
 Define proposal and target process

 Define intermediate densities 𝑞𝑡 (by steering diffusion’s 𝑝𝑡)

 Replace ratio between 𝑝𝑡 by forward-backward kernel ratio 𝑅

𝑤 ∝ 𝑅𝑓
𝑔

(𝑋 𝜏,𝜏′ )
exp(𝑟𝜏(𝑥𝜏))

exp(𝑟𝜏′(𝑥𝜏′))
1/𝑅𝑏

𝑎(𝑋[𝜏,𝜏′])



Example: Diffusion Inference-time Steering with Path RND

Summary: 
 Define proposal and target process

 Define intermediate densities 𝑞𝑡 (by steering diffusion’s 𝑝𝑡)

 Replace ratio between 𝑝𝑡 by forward-backward kernel ratio 𝑅

𝑤 ∝ 𝑅𝑓
𝑔

(𝑋 𝜏,𝜏′ )
exp(𝑟𝜏(𝑥𝜏))

exp(𝑟𝜏′(𝑥𝜏′))
1/𝑅𝑏

𝑎(𝑋[𝜏,𝜏′])



Example: Diffusion Inference-time Steering with Path RND

𝑤 ∝ 𝑅𝑓
𝑔

(𝑋 𝜏,𝜏′ )
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𝑤 ∝ 𝑅𝑓
𝑔

(𝑋 𝜏,𝜏′ )
exp(𝑟𝜏(𝑥𝜏))
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𝛽
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𝛼
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Episode 2

Control Generation with Sequential Monte Carlo in Path Space

Sequence of Importance Resampling (SMC) along the denoising path

Flexible Control of diffusion generation process



Sequel Episode: Curse of Diversity

Figure taken from: He, Jiajun, et al. "CREPE: Controlling Diffusion with Replica Exchange." arXiv.



Sequel Episode: Curse of Diversity

?

Figure taken from: He, Jiajun, et al. "CREPE: Controlling Diffusion with Replica Exchange." arXiv.



Sequel Episode: Curse of Diversity

Figure taken from: He, Jiajun, et al. "CREPE: Controlling Diffusion with Replica Exchange." arXiv.



Replica Exchange: Intuition

Sequential Monte Carlo:

Generate N samples at each step, select the “best” set, go to next step

Replica Exchange (parallel Tempering):

Generate initial guess at all steps, 

attempt to exchange guesses at adjacent steps,

accept exchange if the change makes the guess “better”,

otherwise reject



Sequel Episode: Curse of Diversity

Figure taken from: He, Jiajun, et al. "CREPE: Controlling Diffusion with Replica Exchange." arXiv.



Sequel Episode: Curse of Diversity

Figure taken from: He, Jiajun, et al. "CREPE: Controlling Diffusion with Replica Exchange." arXiv.



Sequel Episode: Curse of Diversity

Figure taken from: He, Jiajun, et al. "CREPE: Controlling Diffusion with Replica Exchange." arXiv.



Control Diffusion with Replica Exchange 

 Tempering: 𝑝0′ ∝ 𝑝0
𝛼



Control Diffusion with Replica Exchange 

 reward-tilting: 𝑝0′ ∝ 𝑝0exp(𝑟0)  



Control Diffusion with Replica Exchange 

 Composition + reward-tilting: 𝑝0′ ∝ ∏ 𝑝0
𝑖

 exp(𝑟0)  

Figure taken from: He, Jiajun, et al. "CREPE: Controlling Diffusion with Replica Exchange." arXiv.



Summary

• Diffusion Model

• Path Measure

• Importance Sampling and SMC / Replica Exchange with Path 
Measures

• Control your Diffusion Model



What’s next?
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