Introduction to Diffusion Models
and Probabilistic Inference with Path Measures

Jiajun He
University of Cambridge
05/11/2025



Episode 1

Diffusion Models as Probabilistic Models in Path Space



We will discuss:

e Recap of Probability Theory and Probabilistic Models

* Generative Models and Diffusion Models

* Path Measure

* Probabilistic Inference with Path Measures: Control your Generation

* Application Demo & What’s Next?



Recap of Probability

 Random variable (RV):

A function mapping from a sample space e.g., {rain tmr, not rain tmr} to a
measurable space e.g., {0, 1}.

* Probability mass function (discrete RV), e.g.,

* Probability density function (continuous RV), e.g.,
N(x|0,1) o« exp(—x?/2)



Recap of Probability

* Joint, Condition, marginal and Bayes’ Rule:

p(x,y) =px@)pWylx) =p()px|y)

p(x) = f p(x,y)dx



Recap of Probability

* Graphical Model:

Q Random Variable
Q Observed Random Variable

—_ Dependency (conditional distribution)



Recap of Probability

* Graphical Model:

@—®)



Recap of Probability

* Graphical Model:

@—®)



Recap of Probability

* Graphical Model:

@—®)



Generative Models and Diffusion Models

Generative Model: @_)@

Prior: p(2) Variational Inference:
q(z|x)p(x) = p(2)p(x|2)
Likelihood: p(x|z)
i.e., DxLlg(z|x)p(x) || p(2)p(x|2)]
Posterior: p(z|x) = q(z|x)



Generative Models and Diffusion Models

Generative Model: @_)@

Prior: p(2) Variational Inference:
q(z|x)p(x) = p(z)p(x|z)
Likelihood: p(x|z)
L.e., Dxrlq(z|x)p(x) || p(2)p(x|2)]

Posterior: p(z|x) = q(z|x) -> Evidence Lower Bound



Generative Models and Diffusion Models

Generative Model: @_)@

Prior: p(z) Fix prior and likelihood, infer posterior
Likelihood: p(x|z) Fix prior, learn likelihood and posterior

Fix prior and posterior, learn likelihood
Posterior: p(z|x) = q(z|x) P P



Generative Models and Diffusion Models

Prior: p(x2)p(x1]x2)

Likelihood: p(x|x{,x5) = p(x|x1)
Posterior: p(xq, x21x) = q(xq1x)q(x]x1)

Variational Inference: q(x{|x)q(xy|x)p(x) = p(x3)p(xq|x2)p (x| x1)



Generative Models and Diffusion Models

pOthlxt
®_ H@ @H H

‘———"

Figure 2: The directed graphical model considered in this work. Figure from [1].

[1] Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models." NeurlPS 2020.



Generative Models and Diffusion Models

Posterior (data -> noise): p(xy)

E8

“

p(xo)



Generative Models and Diffusion Models

Posterior (data -> noise): p(xy)q(xq|xg)

i1

p(xo) q(x1|x0)



Generative Models and Diffusion Models

Posterior (data -> noise): p(xy)q(xq|xg)q(x,]|x1)
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Generative Models and Diffusion Models
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Generative Models and Diffusion Models

Posterior (data -> noise): p(xg)q(xq|xg)q(x2|x1) ...q(x7|x7-1)

N

Cp) qGulxo)



Generative Models and Diffusion Models

Posterior (data -> noise): p(xg)q(xq|xg)q(x2|x1) ...q(x7|x7-1)




Generative Models and Diffusion Models

Posterior (data -> noise): p(xg)q(xq|xg)q(x2|x1) ...q(x7|x7-1)

q(xrlxr—1)

Cp) qGulxo)

Generation (noise->data): p(xp)p(xr_1|x7)




ion Models

iffus
p(x0)q(x1lx0)q(x2]x1)

Generative Models and D

q(xXr|x7-1)

> noise)

ior (data

Poster

q(xrlxr—1)

q(x1|x0) q(xz|xq)

p(xo)

p(xr)p(xr_1lx7) ...

Generation (noise->data)




Generative Models and Diffusion Models

Posterior (data -> noise): p(xg)q(xq|xg)q(x2|x1) ...q(x7|x7-1)

p(xo) q(x1|x0)

q(xrlxr—1)

Generation (noise->data): p(xp)p(xr_1lx7) ...p(X0|x1)




Generative Models and Diffusion Models

Forward SDE (data -> noise): x;, = x; — [fex:dt + \/Z,Btdte

‘e

p(xo) Q(x1|x0)
Backward SDE (noise->c




Generative Models and Diffusion Models

Forward SDE (data — noise)
dx = f(x,t)dt + g(t)dw

dx = [f(X, t) — g’ (t)le log p: (x)]] dt + g(t)dw

Reverse SDE (noise — data)

[2] Song, Yang, et al. "Score-based generative modeling through stochastic differential equations." ICLR 2021.



Generative Models and Diffusion Models

-

\

Forward SDE (data -> noise): dx; = —f:x;dt + /2 AW,
Backward SDE (noise->data):

dx; = [—fex: — 2B:Vlogp:(x;)] dt + /26, dW¢

/




Generative Models and Diffusion Models
-

Forward SDE (data -> noise): dx; = —f:x;dt + /2 AW,
Backward SDE (noise->data):

dx; = [—fex: — 2B:Vlogp:(x;)] dt + /26, dW¢

\

The DDPM Kernel is one way to discretise the SDEs.



Generative Models and Diffusion Models
-

Forward SDE (data -> noise): dx; = —f:x;dt + /23 dW;
Backward SDE (noise->data):

dx; = [—fex: — 2B:Vlogp:(x;)] dt + /26, dW¢

\

The DDPM Kernel is one way to discretise the SDEs.
Other options exist



Generative Models and Diffusion Models

Forward SDE (data -> noise): dx; = f;(x;)dt + o AW,
Backward SDE (noise->data): dx; = g;(x;)dt + a; dW;




Generative Models and Diffusion Models

Forward SDE (data -> noise): dx; = f;(x;)dt + o AW,
Backward SDE (noise->data): dx; = g;(x;)dt + o, dW;

Euler—Maruyama discretisation

xt_|_1 — xt + ft(xt)At —+ \/ O-tAtE
Xi—q = X¢ — g (x )ALt + /o At€’




Generative Models and Diffusion Models

% a
Forward SDE (data -> noise): dx; = f;(x;)dt + o AW,
Backward SDE (noise->data): dx; = g;(x;)dt + a; dW;

N J

% a

Posterior (data -> noise): p(xg)q(xq|xg)q(x2|x1) ... q(x7|x7-1)
_ Generation (noise->data): p(x7)p(xr_1lxr) ... p(x0|%1)




Generative Models and Diffusion Models

Forward SDE (data -> noise): dx; = f;(x;)dt + o AW,
Backward SDE (noise->data): dx; = g;(x;)dt + a; dW;

N Y,
s N
Posterior (data -> noise): p(xg)q(xq|xg)q(x2|x1) ... q(x7|x7-1)
_ Generation (noise->data):  p(xr)p(xr_1[x7) ... p(x0]x1)

)

p(x0)q(xylxg)q(xz]x1) ... q(xrlxr_1) = p(xp)pCer_qlxr) ... p(X0]%1)



Generative Models and Diffusion Models

Forward SDE (data -> noise): dx; = f;(x;)dt + g, dW;
Backward SDE (noise->data): dx; = g;(x;)dt + a; dW;

N Y,
s N
Posterior (data -> noise): p(xg)q(xq|xg)q(x2|x1) ... q(x7|x7-1)
_ Generation (noise->data):  p(xr)p(xr_1[x7) ... p(x0]x1)

)

p(x0)q(xylxg)q(xz]x1) ... q(xrlxr_1) = p(xp)pCer_qlxr) ... p(X0]%1)

“Forward SDE and backward SDE define the same joint distribution”



Generative Models and Diffusion Models

\_

Forward SDE (data -> noise): dx; = f;(x;)dt + o AW,
Backward SDE (noise->data): dx; = g;(x;)dt + o, dW;

)

“Forward SDE and backward SDE define the same joint distribution”

iff.
ge = fr — UtZVIOgPt

Nelson’s relation



Generative Models and Diffusion Models

Forward SDE (data — noise)
dx = f(x,t)dt + g(t)dw

dx = [f(X, t) — g’ (t)le log p: (x)]] dt + g(t)dw

Reverse SDE (noise — data)

[2] Song, Yang, et al. "Score-based generative modeling through stochastic differential equations." ICLR 2021.



Generative Models and Diffusion Models

Forward SDE (data -> noise): dx; = f;(x;)dt + o AW,
Backward SDE (noise->data): dx; = g;(x;)dt + a; dW;

N Y,
s N
Posterior (data -> noise): p(xg)q(x1|x0)q(x2|x1) ... q(x7|x7-1)
_ Generation (noise->data):  p(xr)p(xr_1[x7) ... p(x0]x1)

)

p(x0)q(xylxg)q(xz]x1) ... q(xrlxr_1) = p(xp)pCer_qlxr) ... p(X0]%1)

“Forward SDE and backward SDE define the same joint distribution”



Generative Models and Diffusion Models

Forward SDE (data -> noise): dx; = f;(x;)dt + o AW,
Backward SDE (noise->data): dx; = g;(x;)dt + a; dW;

N J
s N
Posterior (data -> noise): p(xg)q(xq|xg)q(x2|x1) ... q(x7|x7-1)
_ Generation (noise->data): p(x7)p(xr_1lxr) ... p(x0|%1)

)

p(x0)q(xylxg)q(xz]x1) ... q(xrlxr_1) = p(xp)pCer_qlxr) ... p(X0]%1)

“Forward SDE and backward SDE define the same joint distribution”

same joint distribution over path x,, x{, "+, Xt



Diffusion Models and Path Measures

Forward SDE (data -> noise): dx; = f;(x;)dt + o AW,
Backward SDE (noise->data): dx; = g;(x;)dt + a; dW;

N J
s N
Posterior (data -> noise): p(xg)q(xq|xg)q(x2|x1) ... q(x7|x7-1)
_ Generation (noise->data): p(x7)p(xr_1lxr) ... p(x0|%1)

)

p(x0)q(xylxg)q(xz]x1) ... q(xrlxr_1) = p(xp)pCer_qlxr) ... p(X0]%1)

“Forward SDE and backward SDE define the same joint distribution”

same joint distribution over path x,, x{, "+, Xt



Path Measures and I1to’s Calculus

Forward SDE (data -> noise): dx; = f;(x;)dt + o AW,
Backward SDE (noise->data): dx; = g;(x;)dt + a; dW;

Po(x0)q(X1|Xg)q(X2|X1)..a(Xp|XT_1)
pr(xr)p(XT—1|XT)..p(X0|X1)

o () p( 00 gy, FEODy, (000 g gECOD t)

lim

ex - dXe — dX; +
pr(X;) of 207 of e 20f

— 7

~—
Backward Ito Integral

j a.(X;) <d—Xt = limz An+1Xnt1) * Kner — Xn)




Episode 1

Diffusion Models are
- Deep hierarchical VAEs
~Reverse SDEs

Path Measure is just

- Sequence of Gaussian densities (to the limit)

~something involving Ito’s integral ®



More Math Details?



“Density Ratio” and Radon-Nikodym Derivative

£ Don’t freak out about the name Radon-Nikodym Derivative
--- it’s just the “density ratio”

~Very informally, let P and Q be two measures with density p and g, their density ratio is the
Radon-Nikodym Derivative (RND), denoted as

p(x) _ d_P(
a _ daQ™

~The density is essentially the RND w.r.t to Lebesgue measure
dP d
P = T @40 = T2

- RND is helpful for spaces without Lebesgue measure



Stochastic Differential Equations

.| Forward SDE
dX, = f(X,, t)dt + o,dW,

...] Backward SDE
dX, = g(X,, t)dt + o, AW,

Intuitive understanding by Eular-Maruyama Discretisation:

Xne1 — Xn = f(Xp, tp)At + O_n\/A_tE
Xns1 — Xn = 9(Xni1, tas )AL + 0y VALE



From Gaussian Density Ratio to Path RND

Xns1 — Xn = [ (X, tp) AL + O-n\/A_tE
? for a discretised path sample {X;, X5, ... Xy}, what is its density?
Geansitiondensity: P (X41[X5) = N K1 X + F K, )AL, 02A1)

L Full path density: p(Xl,XZ, ---XN) — p(Xl)Hp(Xn+1|Xn)



From Gaussian Density Ratio to Path RND

Now take a closer look at

N(Xn+1 |Xn + f(Xru tn)At» O-%At)

— (o, VALe)? 1
logp = (o ) — loga, —[ElogAt]+ C

e density diverge when At =- 0




From Gaussian Density Ratio to Path RND

But what if we have another SDE:
P1 = N(Xn+1 |Xn T f(Xn» tn)At: O-T%At)

P2 = N(Xn+1|Xn + h(an tn)Atr G%At)

(2X,,.1—2X,, — hAt — fAE)(hAL — FAY)

lo — 1 =
gp1 — 108P; 20',%At

®® density ratio did NOT diverge when At — 0



From Gaussian Density Ratio to Path RND

For solution X to one SDE: dX; = f (X, t)dt + o, dW,,
we cannot define its density p(Xo)[Tp (X¢+q¢ 1 Xe)

But with another SDE: dX; = h(X;, t)dt + o,dW/,,

d
T



Forward-forward RND and Girsanov

P: dX; = f(X, t)dt + o, dW;, Xy ~ pg
Q: dX; = h(X;, t)dt + o, dW;, Xy ~ qq

dP p(X)IIN: (Xnt1|Xn)
dQ Q(XO)MNZ (Xn+1|Xn)




Forward-forward RND and Girsanov

P: dX; = f(X;, t)dt + o,dW;, Xy ~ pg
Q: dX; = h(X;, t)dt + o, dW;, Xy ~ qq

2 2 2
) 20¢ of 20¢

P X (X, 2(%, (X, (%,
P 1y =1 o)exp(jf(tz).dxt_f( g [80D gy, ¢ >dt)

_/

v v
Forward Ito Integral] a;(X;) - dX; = limz a,(X;,) - Xns1 — X))
Initial density ratio



Forward-backward RND

P: dX;, = f(X,, t)dt + o, dW,, Xy ~ Py
Q: dX; = g(X;, t)dt + o, dW, X; ~ q4

dP ~ Po(Xo)[IN: (Xpn+11Xn)
dQ ql(Xl)HNZ (Xn|Xn+1)




Forward-backward RND

P: dX;, = f(X,, t)dt + o, dW,, Xy ~ Py
Q: dX; = g(X;, t)dt + o, dW, X; ~ q4

dP __ Do (Xo) fe(Xe) fe (Xe) g:(Xy) —  gf(Xe)
dfa (X) = (X)) exp( g -dX; — 207 dt — f g -dX; + 207 dt)
\/./ — —— _J

Initial densities Backward Ito Integral

j a.(X¢) (d—Xt = limz Apr1Xnt1) - Kns1 — Xn)



Forward-backward RND

P: dX;, = f(X,, t)dt + o, dW,, Xy ~ Py
Q: dX; = g(X;, t)dt + o, dW, X; ~ q4

dP __ Do (Xo) fe(Xe) fe (Xe) g:(Xy) —  gf(Xe)
dfa (X) = (X)) exp( g -dX; — 207 dt — f g -dX; + 207 dt)
\/./ — _

Initial densities o JIN (X1 1 X))
im
HNZ (Xn|Xn+1)




A Side Note on Stochastic Intergrals
Ito forward integral

[ a0 dxe =tim Y an() - (e = Xo)

Ito backward integral

f a.(X;) (d_Xt = limz: An+1(Xnt1) - Xnt1 — Xn)

Stratonovich integral

X, ) + X
jat(Xt) o dXt _ limz an( n) ;n+1( n+1) . (Xn+1 _Xn)




A Side Note on Stochastic Intergrals

Ito forward integral

[ a0 dxe =tim Y an() - (e = Xo)

Ito backward integral

f a.(X;) (d_Xt = limz: An+1(Xnt1) - Xnt1 — Xn)

Conversion rule:

j ar(X,) - dX, — j ap(X,) - X, = — j 02V - a,dt



Time-reversal and Nelson’s relation

P: dX, = f(X,, t)dt + o, dW,, Xy ~ Py
Q: dX; = g(X,, t)dt + o, dW,, X; ~ py

b

_ dQ
—Pie —=1
Q=Ple,5p

iff
g, t) = f(-,t) — a2 Vlog p:(-)



Time-reversal and Nelson’s relation

P: dX, = f(X,, t)dt + o, dW,, Xy ~ Py
Q: dX; = g(X,, t)dt + o, dW,, X; ~ py

—

_ dQ
—Pie —=1
Q=Ple, 3p

iff
g, t) = f(,t) — a2 Vlog p(-)

e.g., 0in VE process score



Episode 2

Control Generation with Sequential Monte Carlo in Path Space



Generation Control of Diffusion Models

Backward SDE (noise->data):
eXe + 2B:Vlogp: (x)] dt + /2B, dte’




Generation Control of Diffusion Models

Backward SDE (noise->data):
+ 26, Vlo

22, oy
A e B

What if | want to generate samples:

¢ - satisfying certain constraint

¢ - satisfying certain reward

¢ - composing properties of two diffusion models
¢ has sharper distribution

]

]

]

]



Generation Control of Diffusion Models

Backward SDE (noise->data):
Xty = X

FIE A TS i OSINE
5O

0] dt + /2B, dte’
% Fgs ¢

(x7_q

p(xglxy)

What if | want to generate samples:

(- satisfying certain constraint  q(xg) « p(xy)1{x, € constraint family}
¢ - satisfying certain reward  q(xy) < p(xy)exp(r(xy))

¢~ composing properties of two diffusion models q(xy) «< p(xy)p' (xo)

¢ has sharper distribution g(xy) o« p(xy)®



Generation Control of Diffusion Models
Backward SDE (noise->data):

eXe + 2B:Vlogp: (x)] dt + /2B, dte’

Options:
- Generate N samples, find the best set of samples



Generation Control of Diffusion Models

Backward SDE (noise->data):
eXe + 2B:Vlogp: (x)] dt + /2B, dte’

EaTES 66 TR & . . aomn s o . a - — ’
e et o 4 T s, ) v Mt ¢ B o
-

S
WY

= IS

Options:
- Generate N samples, find the best set of samples
- Generate n samples at each step, find the best set of samples for next step



Generation Control of Diffusion Models

Inference Best-of-N

N
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T — Denoising — t =0 T — Denoising — t =0

Figure taken from
Singhal, Raghav, et al. "A general framework for inference-time scaling and steering of diffusion models." ICML 2025



Generation Control of Diffusion Models

Inference
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T — Denoising — t =0 =T — Denoising —» t =0
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Figure taken from
Singhal, Raghav, et al. "A general framework for inference-time scaling and steering of diffusion models." ICML 2025



Generation Control of Diffusion Models

Inference
i i i
: : ' e
: : I : ‘
i 5 / N Y we
i d?/ \ I .
i A [ ! How to pick
E'"J‘j'\ d/“/ L f.’/ the “best” set of samples?
T — Denoising — t = 0 =T — Denoising —» 1t = ()

Figure taken from
Singhal, Raghav, et al. "A general framework for inference-time scaling and steering of diffusion models." ICML 2025



Importance Sampling and Sequential Monte Carlo

We are able to draw sample from g(x)
But we want to draw sample from p(x)
HOW?



Importance Sampling and Sequential Monte Carlo

We are able to draw sample from q(x) --- proposal
But we want to draw sample from p(x) --- target
HOW?



Importance Sampling and Sequential Monte Carlo

We are able to draw sample from q(x) --- proposal
But we want to draw sample from p(x) --- target
HOW?

Eplf(x)] = [f () ——



Importance Sampling and Sequential Monte Carlo

We are able to draw sample from q(x) --- proposal
But we want to draw sample from p(x) --- target

HOW?

Importance Weight




Importance Sampling and Sequential Monte Carlo

We are able to draw sample from q(x) --- proposal
But we want to draw sample from p(x) --- target

HOW?

Importance Weight

. Requirements on g(x): can sample & eval density
. Requirements on p(x): can eval density



Importance Sampling and Sequential Monte Carlo

We are able to draw sample from q(x) --- proposal
But we want to draw sample from p(x) --- target

1. Draw xq,x5, ", Xy ~ @q

2. Calculate 22 for all of the N samples

q(x)
p(x1) p(x2) p(xm)
q(x1)’q(xz)’ " aq(xn)

3. Draw iq, iy, -, iy ~ Cat(

4., Returnxil,xiz,---,xiM



Importance Sampling and Sequential Monte Carlo

We are able to draw sample from q(x) --- proposal
But we want to draw sample from p(x) --- target

1. Draw xq,Xx2,, Xy ~ q

2. Calculate 22 for all of the N samples

q(x)
p(x1) p(x2) p(xm)
q(x1) " q(x2)” " q(xn)

3. Draw iq, iy, -, iy ~ Cat(

4., Returnxil,xiz,---,xiM




Importance Sampling and Sequential Monte Carlo

We are able to draw sample from q(x) --- proposal
But we want to draw sample from p(x) --- target

1. Draw xq,x5, ", Xy ~ @q

2. Calculate 22 for all of the N samples

q(x)
p(x1) p(x2) p(xm)
q(x1) " q(x2)” " q(xn)

3. Draw iq, iy, -, iy ~ Cat(

4., Returnxil,xiz,---,xiM




Importance Sampling and Sequential Monte Carlo

We are able to draw sample from q(x) --- proposal
But we want to draw sample from p(x) --- target

1. Draw xq,x5, ", Xy ~ @q

2. Calculate 22 for all of the N samples

q(x)
p(x1) p(xa) p(xm)
q(x1)’ q(x2)" " q(xn)

3. Draw il)iZJ'":iM ~ Cat(

4. Returnx; ,x;,, -, X;,




Importance Sampling and Sequential Monte Carlo

We are able to draw sample from q(x) --- proposal

But we want to draw sample from p(x) --- target
1. Draw xq{, X5, -, Xy ~ @q p(x)
2. Calculate % for all of the N samples
L p(x1) PO p(xm)
3. Drawiq, iy, -,y ~ Cat (q(xl)’q(xz)’ ' 2Gen)
4. Return x; ,x; ,-, X; : z

M

Exact when N - o




Importance Sampling and Sequential Monte Carlo

We are able to draw sample from q(x) --- proposal
But we want to draw sample from p(x) --- target

1. Draw xq,x5, ", Xy ~ @q

2. Calculate 22 for all of the N samples

q(x)
p(x1) p(x2) p(xm)
q(x1) " q(x2)” " q(xn)

3. Draw iq, iy, -, iy ~ Cat(

4., Returnxil,xiz,---,xiM

Importance Re-sampling




Importance Sampling and Sequential Monte Carlo

We are able to draw sample from q(x) --- proposal
But we want to draw sample from p(x) --- target

Then...

We are able to draw sample from g(y|x) --- proposal
But we want to draw sample from p(y) --- target



Importance Sampling and Sequential Monte Carlo

We are able to draw sample from q(x) --- proposal
But we want to draw sample from p(x) --- target

Then...

We are able to draw sample from g(y|x) --- proposal
But we want to draw sample from p(y) --- target

Apply the previous procedure again!



Importance Sampling and Sequential Monte Carlo

DraW}/'pyZ; YN~ q(ylx)

2. Calculate P)p|y) for all of the N samples
p(x)q(y|x)

pYOP(x1ly) p2)p(Xaly2) p(yzv)p(xzvlyzv))

Draw iy, iy, -,y ~ Cat (p(xl)q(ynxl)’p(xz)q<y2|xz)' ' PO ax)

4. Returny; ,y;,, Vi,

We are able to draw sample from g(y|x) --- proposal
But we want to draw sample from p(y) --- target

Apply the previous procedure again!



Importance Sampling and Sequential Monte Carlo

DraW}ﬁ:}’z:'”»)’N (ylx)

2. Calculate P)p(xly) for all of the N samples
p(x)q(y|x)

pYOP(x1ly) p2)p(Xaly2) p(yzv)p(xzvlyzv))

Draw iy, i3, -+, iy ~ Cat (p(xl)q(y1|x1) "p(x2)q(zlx2)”  Tp(xn)anlxn)

4. Returny; ,y;,, Vi,

We are able to draw sample from g(y|x) --- proposal
But we want to draw sample from p(y) --- target

Apply the previous procedure again!



Importance Sampling and Sequential Monte Carlo

We are able to draw sample from q(xy), g(xy_1|xn), ... -—- proposals
But we want to draw sample from p(xy), p(Xy_1), ... --- targets

Apply the previous procedure again and again and again!

Sequential Monte Carlo / Particle Filtering



Modified Diffusion process

Importance Sampling and Sequential e Carlo

We are able to draw sample from q(xy), g(xy_1|xy), ... --- proposals
But we want to draw sample from p(xy), p(Xy_1), ... --- targets

Apply the previous procedure again and again and again!

Sequential Monte Carlo / Particle Filtering



Importance Sampling and Sequential Monte Carlo

We are able to draw sample from q(xy), g(xy_1|xy), ... --- proposals
But we want to draw sample from p(xy), p(Xy_1), ... --- targets
Apply the previous procedure again and a‘nd again!
Modified

Sequential Monte Carlo / Particle Filtering Diffusion

Marginal
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What kind of control we want to impose to our diffusion model?
What does this mean in terms of density functions?



Generation Control of Diffusion Models

What kind of control we want to impose to our diffusion model?
What does this mean in terms of density functions?

p
p* (a=4.0)

Diffusion Model p,
~ Tempering: po’ X p§

.~ Molecular simulation

Figure taken from: Karan, Aayush, and Yilun Du. "Reasoning with Sampling: Your Base Model is Smarter Than You Think." arXiv.



Generation Control of Diffusion Models

What kind of control we want to impose to our diffusion model?
What does this mean in terms of density functions?

Diffusion Model p,
- Tempering: py’ < p§

. Molecular simulation

Alanine at 800K Alanine at 300K

Figure taken from: Karan, Aayush, and Yilun Du. "Reasoning with Sampling: Your Base Model is Smarter Than You Think." arXiv.



Generation Control of Diffusion Models

What kind of control we want to impose to our diffusion model?
What does this mean in terms of density functions?

e ﬂiiinlﬂ!.!&&ll!!hhl.!!&
Diffusion Model p, AVVNNSLVSVVASPSTVELY
!WW&&!!WW&I‘!!W@MMII

~ Tempering: po’ X p§

. Molecular simulation

220609V 2%08008.5%°9
!ll.hﬂ!!.!!ﬁ.hll!ﬂ!!l!

= Tilting: n." o LAAS TEA L TTRAAL LXK X))
Tilting: po” & poexp (1o (xo)) $9500089000UNS 0NNV
. Inpainting, infilling (motif-scaffolding), (a) class: balloon;

Sl t: a blue balloon.
reward-tlltmg, etc Reward prompt: a blue balloon

Figure taken from: He, Jiajun, et al. "CREPE: Controlling Diffusion with Replica Exchange." arXi



Generation Control of Diffusion Models

What kind of control we want to impose to our diffusion model?
What does this mean in terms of density functions?

Diffusion Model p, a B
, e an ] a e s T (1) (2)
Tempering: p,’ « p§ omposition: py” X { pg Po

. Molecular simulation . Stitching / composing model properties

e.g., ligand binding to two protein pockets
- Tilting: po" < poexp(ry(xp))

. Inpainting, infilling (motif-scaffolding),
reward-tilting, etc



Generation Control of Diffusion Models

What kind of control we want to impose to our diffusion model?
What does this mean in terms of density functions?

Better than known. (T) (P1 *P2)(T) max(P1, P2) (1)

Sum score 0.34510.288 65.110417 502 —T7.22211 348 ( ) (2) ﬁ
FKC 0.608-0.390 82.371 124928 —8.296.1 450 C i
- Composition: ( ) ( )
RNC (ca =1,e5 = 0.0) 0.58910.413 81.186+26. 158 —8.12241 588 p pO pO p()
RNC (e, = 1,65 = 0.2) 0.6494-0.356 81.?71-{-2.1.(573 —8.112-1—1_({.({.{) . . . .
i Stitching / composing model properties
Pytop-1(})  Patop-l(l) Div. (f)  Val. & Uniq. (1)  Qual. (1) e.g., ligand binding to two proteln pockets
—9.41141 574 —9.769+1 758 0.881+0.010 0.927 £0.147 0.13410.087 W5 | 9.936
—9.43741.733 —10.035£1601  0.81440.043 0.92510.113 0.19210.101 Y W Do -~ ,-@"VJ’ 4 )
j R - e S \ @ ,._\ \:
—9.650+1608 —10.07511663  0.82310.027 0.942+0.069 0.22210.173 \i\ i ﬁ/ Y
—9.58511885 —10.10211525 0.83610025 0.95010066  0.22310.202 5 e D QT&@ - :

)| % &
He, Jiajun, et al. "RNE: a plug-and-play framework for diffusion density estimation and inference-time control." arXiv. U
Skreta, Marta, et al. "Feynman-kac correctors in diffusion: Annealing, guidance, and product of experts." ICML 2025. Y s SV



Generation Control of Diffusion Models

What kind of control we want to impose to our diffusion model?
What does this mean in terms of density functions?

Diffusion Model p, a B
, e an ] a e s T (1) (2)
Tempering: p,’ « p§ omposition: py” X { pg Po

. Molecular simulation . Stitching / composing model properties

e.g., ligand binding to two protein pockets
- Tilting: po" < poexp(ry(xp))

. Inpainting, infilling (motif-scaffolding),
reward-tilting, etc



Sequential Monte Carlo Weight Calculation

Diffusion model generates pr(x7), pr—1(X7-1), ..., Po(x0)

with denoising kernels p(xp_1|x7), p(x7_2|x7-1), .., P(X0|x71)

We want to generate from py'(x7), pr—1 (X7_-1), ..., Do’ (%)

with proposal kernels p’(xr_1|x7), p'(xr—21x7-1), .., D" (X0 %)

p'(xr—1)p(xe|xp—1)
p' (x)p' (xe—1]x¢)




More Math?



Forward-backward RND

P: dX;, = f(X,, t)dt + o, dW,, Xy ~ Py
Q: dX; = g(X;, t)dt + o, dW, X; ~ q4

L dX; +

207

R

dP _po (Xo) ft(Xt). _ftZ(Xt) B g (X)) —— gt( t)
de(X) ql(Xl) p(j of aXe 207 at f of dt)
~—— — ——
Initial densities o JIN (X1 1 X))

1m
HNZ(XnIXn+1)

For simplicity, we hereafter call

Rg(X)—eXp<_fft X¢) CdX, + fe (X t)dt+jgt( t) <d—Xt th(GtZt) >



Forward-backward RND

P: dXt — f(Xt’ t)dt + O-tth!XO ~
Q . dXt — g(Xt, t)dt + O-tth'Xl ~ ql

dP __ Do (Xo) fe(X¢) . . ftZ(Xt) B g (X)) —— gt( t)
dTS(X) (X)) =P (j of e 20 “ f of
—— — ——

L dx; +

20f

;

R

Initial densities o JIN (X1 1 X))
im
HNZ (Xn|Xn+1)

For simplicity, we hereafter call

R]‘cg (X)= : HN (XnlXn+1)

HNh(Xn+1|Xn)




Example: Diffusion Inference-time Steering with Path RND

‘< Problem Setup:
Given a pretrained model for p,, generate samples ~ py(x)exp(r(x))
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Given a pretrained model for p,, generate samples ~ py(x)exp(r(x))
L4 Strategy:

* Choose a heuristic guidance process;
* Define a sequence of intermediate target densities q; X p;(x¢)exp(r:(x¢));



Example: Diffusion Inference-time Steering with Path RND

‘< Problem Setup:
Given a pretrained model for p,, generate samples ~ py(x)exp(r(x))

L4 Strategy:
* Choose a heuristic guidance process;
* Define a sequence of intermediate target densities q; X p;(x¢)exp(r:(x¢));
* Do importance-resampling to move samples at g,/ to q; (t < t')
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‘< Problem Setup:
Given a pretrained model for p,, generate samples ~ py(x)exp(r(x))

L4 Strategy:
* Choose a heuristic guidance process;
* Define a sequence of intermediate target densities q; X p;(x¢)exp(r:(x¢));
* Do importance-resampling to move samples at g,/ to q; (t < t')



Example: Diffusion Inference-time Steering with Path RND

‘< Problem Setup:
Given a pretrained model for p,, generate samples ~ py(x)exp(r(x))

L4 Strategy:
* Choose a heuristic guidance process;
* Define a sequence of intermediate target densities q; X p;(x¢)exp(r:(x¢));
* Do importance-resampling to move samples at g,/ to q; (t < t')

We already learned about this pipeline from Raghav (Feynman-Kac Steering); Marta
(Feynman-Kac Corrector); Luhuan (RDSMC) during the talks
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have {x} ~ q,/, how to obtain exact sample {x} ~ q;
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* Do importance-resampling



Example: Diffusion Inference-time Steering with Path RND

have {x} ~ q,/, how to obtain exact sample {x} ~ q;
* Choose a heuristic guidance process;

dX; = (score + guidance) dt + g, dW;, X1~ qyr

* Define a sequence of intermediate target densities q; X ps(x;)exp(r:(x¢));

* Do importance-resampling



Example: Diffusion Inference-time Steering with Path RND

have {x} ~ q,/, how to obtain exact sample {x} ~ q;
* Choose a heuristic guidance process;

“proposal”  dX, = a(X, t)dt + o, dW,, Xer ~ qy

* Define a sequence of intermediate target densities g; < p;(x;)exp(r:(x¢));
* Do importance-resampling
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Example: Diffusion Inference-time Steering with Path RND

have {x} ~ q,/, how to obtain exact sample {x} ~ q;
* Choose a heuristic guidance process;

“proposal” dXt = a(Xt, t)dt ~+ O'tth, XT’ ~ {q.
“target”? dXt = b(Xt, t)dt + O'tth, XT ~ (r

* Define a sequence of intermediate target densities q; X ps(x;)exp(r:(x¢));

* Do importance-resampling

target

W
proposal



Example: Diffusion Inference-time Steering with Path RND

have {x} ~ q,/, how to obtain exact sample {x} ~ q;
* Choose a heuristic guidance process;

“proposal” dXt = a(Xt, t)dt ~+ O'tth, XT’ ~ {q.
“target”? dXt = b(Xt, t)dt + O'tth, XT ~ (r

* Define a sequence of intermediate target densities q; X ps(x;)exp(r:(x¢));

* Do importance-resampling

target
dr’ (XT’)HNa (Xn |Xn+1)
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Example: Diffusion Inference-time Steering with Path RND

have {x} ~ q,/, how to obtain exact sample {x} ~ q;
* Choose a heuristic guidance process;

“proposal” dXt = a(Xt, t)dt ~+ O'tth, XT’ ~ {q.
“target”? dXt = b(Xt, t)dt + O'tth, XT ~ (r

* Define a sequence of intermediate target densities q; X ps(x;)exp(r:(x¢));

* Do importance-resampling

4z (XT)HND (Xn+1 |Xn)
q’ (XT’)HNG (Xn |Xn+1)

w



Example: Diffusion Inference-time Steering with Path RND

have {x} ~ q,/, how to obtain exact sample {x} ~ q;
* Choose a heuristic guidance process;

“proposal” dXt = a(Xt, t)dt ~+ O'tth, XT’ ~ {q.
“target”? dXt = b(Xt, t)dt + O'tth, XT ~ (r

* Define a sequence of intermediate target densities q; X ps(x;)exp(r:(x¢));

* Do importance-resampling

4z (XT)HND (Xn+1 |Xn)
q-’ (XT’)HNCL (Xn |Xn+1)

w



Example: Diffusion Inference-time Steering with Path RND

have {x} ~ q,/, how to obtain exact sample {x} ~ q;

* Choose a heuristic guidance process;
— a(Xt, t)dt T O-tth,
— b(Xt, t)dt T O-tth

* Define a sequence of intermediate targe

“proposal’

“target”?

* Do importance-resampling

dX,
dx,

w

RY (X)

[INg (X7 | Xp41)

im
HNh(Xn+1|Xn)

4z (XT)HND (Xn+1 |Xn)
q-’ (XT’)HNCL (Xn |Xn+1)




Example: Diffusion Inference-time Steering with Path RND

have {x} ~ q,/, how to obtain exact sample {x} ~ q;

* Choose a heuristic guidance process;
dXt — a(Xt, t)dt T O-tth,
dXt — b(Xt, t)dt T O-tth

* Define a sequence of intermediate targe

“proposal’

“target”?

* Do importance-resampling

w

4z (XT)HND (Xn+1 |Xn)

q-’ (XT’)HNCL (Xn |Xn+1)




Example: Diffusion Inference-time Steering with Path RND

have {x} ~ q,/, how to obtain exact sample {x} ~ q;
* Choose a heuristic guidance process;

“proposal” dXt = a(Xt, t)dt ~+ O'tth, XT’ ~ {q.
“target”? dXt = b(Xt, t)dt + O'tth, XT ~ (r

* Define a sequence of intermediate target densities q; X ps(x;)exp(r:(x¢));

* Do importance-resampling

q.(X)
W X 1/R&(X,. s
qu (XT/) / b( [T,T ])




Example: Diffusion Inference-time Steering with Path RND

have {x} ~ q,/, how to obtain exact sample {x} ~ q;
* Choose a heuristic guidance process;

“proposal” dXt = a(Xt, t)dt ~+ O'tth, XT’ ~ {q.
“target”? dXt = b(Xt, t)dt + O'tth, XT ~ (r

* Define a sequence of intermediate target densities q; X ps(x;)exp(r:(x¢));

* Do importance-resampling

pr(x7)exp(rz(xz)) a
Y o Gen)exp(rer (1)) 1/Rp (Xjz217)




Example: Diffusion Inference-time Steering with Path RND

have {x} ~ q,/, how to obtain exact sample {x} ~ q;
* Choose a heuristic guidance process;

“proposal” dXt = a(Xt, t)dt ~+ O'tth, XT’ ~ {q.
“target”? dXt = b(Xt, t)dt + O'tth, XT ~ (r

* Define a sequence of intermediate target densities q; X ps(x;)exp(r:(x¢));

* Do importance-resampling

llllllllllllllllll

w X 1/Rg(X[T,T,])

lllllllllllllllllll



Example: Diffusion Inference-time Steering with Path RND

P: dX; = diffusion denoising dt + o,dW, X_ ~p_ tE€ [1,T]

pr(Xz) I 9
D1 (X,L./) *

llllllllllllllllll

w X 1/Rg(X[T,T,])

lllllllllllllllllll



Example: Diffusion Inference-time Steering with Path RND
P: dX; = diffusion denoising dt + at(d—Wt X1 ~pg tE|[r,T]
P: dX, = diffusion noising dt + o, dW; X, ~p;, te]r,T]

pr(Xz) I 9
D1 (X,L./) *

llllllllllllllllll

w X 1/Rg(X[T,T,])

lllllllllllllllllll



Example: Diffusion Inference-time Steering with Path RND

P: dX; = g(X;, t)dt + oo dW, X ~po t€|[1,7]
P. dX; = f(X, t)dt + o, dW, X,~p, tE€]r,T]

p(X7) I 9
D1 (X,L./) *
""" pe(r)exp( (%)
v Ocipr’ (xTr),:exp(TTr (xr’)) 1/Rb (X[T'T’])

lllllllllllllllllll



Example: Diffusion Inference-time Steering with Path RND

P: dX; = g(X;, t)dt + a;d_Wt X1 ~pg tE|[r,T] ((ﬁ
P: dX; = f(X,, t)dt + o, dW, X, ~p, tE€]|r,1] dp (X[T:T']) -
pr(X7)

_ pY
D1 (X)) Ry (X[z2])

llllllllllllllllll

w

1/Rg (X[T,T’])

llllllllllllllllll



Example: Diffusion Inference-time Steering with Path RND

P: dX; = g(X;, t)dt + a;d_Wt X1 ~pg tE|[r,T] ((ﬁ
P: dX; = f(X,, t)dt + o, dW, X, ~p, tE€]|r,1] dp (X[T:T']) -
pr(X7)

_ pY
D1 (X)) Ry (X[z2])

lllllllllllllllllllll
* .‘

 exp(x(X2)) . 4
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Example: Diffusion Inference-time Steering with Path RND

* Choose a heuristic guidance process;
“proposal”  dX, = a(Xt, t)dt + o dWs, X1~ qyr
“target” dXt — b(Xt, t)dt T O-tth; XT ~ qT

* Define a sequence of intermediate target densities q; X ps(x;)exp(r:(x¢));

* Do importance-resampling

exp(17(x7))
cexXp (TT’ (xr’))

W X ng (X[T,T’]) 1/Rlcal(X[T,T’])



Example: Diffusion Inference-time Steering with Path RND

exp(1z (X))
exXp (TT’ (XT’))

w X ng (X[T,T’]) 1/Rg(X[T,T’])

Summary:



Example: Diffusion Inference-time Steering with Path RND

exp(1z (X))
exXp (TT’ (XT’))

w X ng (X[T,T’]) 1/Rg(X[T,T’])

Summary:
- Define proposal and target process



Example: Diffusion Inference-time Steering with Path RND

exp(1z (X))
exXp (TT’ (XT’))

w X ng (X[T,T’]) 1/Rg(X[T,T’])

Summary:
- Define proposal and target process

- Define intermediate densities g; (by steering diffusion’s p;)



Example: Diffusion Inference-time Steering with Path RND

exp(1z (X))
exXp (TT’ (XT’))

w X ng (X[T,T’]) 1/Rg(X[T,T’])

Summary:
- Define proposal and target process

- Define intermediate densities g; (by steering diffusion’s p;)

- Replace ratio between p; by forward-backward kernel ratio R



Example: Diffusion Inference-time Steering with Path RND

exp(1z (X))
exXp (TT’ (XT’))

w X ng (X[T,T’]) 1/Rg(X[T,T’])

Anneal target pf

B a
Composition/CFG between 2 diffusions (pt(l)) (pt(z))



Example: Diffusion Inference-time Steering with Path RND

exp(1z (X))
exXp (TT’ (XT’))

w X ng (X[T,T’]) 1/Rg(X[T,T’])

Anneal target pf

W X [R]‘? (X[mr])]ﬁ 1/Ry (X771
Composition/CFG between 2 diffusions (pt( ))ﬁ (pt(z))

w o [RE (Xpeo)]| [RE (Xpewr)]” 1/RE )



Episode 2

Control Generation with Sequential Monte Carlo in Path Space
. Sequence of Importance Resampling (SMC) along the denoising path

. Flexible Control of diffusion generation process



Sequel Episode: Curse of Diversity

N particles generated in parallel
e
-~ o~

<
Arenuanbas Suruuny

Reweight
W\ y

and resample

Figure taken from: He, Jiajun, et al. "CREPE: Controlling Diffusion with Replica Exchange." arXiv.



Sequel Episode: Curse of Diversity

Figure taken from: He, Jiajun, et al. "CREPE: Controlling Diffusion with Replica Exchange." arXiv.



Sequel Episode: Curse of Diversity

[o[1ered ur Suruuny

Accepted —* Rejected
communication -, communication

Figure taken from: He, Jiajun, et al. "CREPE: Controlling Diffusion with Replica Exchange." arXiv.



Replica Exchange: Intuition

Sequential Monte Carlo:
Generate N samples at each step, select the “best” set, go to next step

Replica Exchange (parallel Tempering):

Generate initial guess at all steps,

attempt to exchange guesses at adjacent steps,

accept exchange if the change makes the guess “better”,

otherwise reject



Sequel Episode: Curse of Diversity

[o[1ered ur Suruuny

Accepted —* Rejected
communication -, communication

Figure taken from: He, Jiajun, et al. "CREPE: Controlling Diffusion with Replica Exchange." arXiv.



Sequel Episode: Curse of Diversity
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Figure taken from: He, Jiajun, et al. "CREPE: Controlling Diffusion with Replica Exchange." arXiv.



Sequel Episode: Curse of Diversity

SR l

Figure taken from: He, Jiajun, et al. "CREPE: Controlling Diffusion with Replica Exchange." arXiv.



Control Diffusion with Replica Exchange

Tempering: py’ < p§

Table 1: Inference-time tempering performance for Alanine Dipeptide, Tetrapeptide and Hexapeptide.

._ J FKC - CgEPE
' Anneal Score  Anneal Noise (Ours)

Alanine Dlpeptlde Energy TVD 0.345 o000 0.894 - 0o 0.391 ~ooe  0.224
ALA Dipeptide Distance TVD 0.023 + 0.001 0.036 + oo 0.024 o001 0.019

(800K — 300K) Sample W2 0.293 + o0.001 0.282 + oom 0.282 o001 0.264

TICA MMD 0.116 + o003 0.108 = 000 0.168 oo 0.096

B Energy TVD  0.122 00 0436 —0or  0.154 —ome 0,122

! I ALA Tetrapeptide Distance TVD  0.014 - oo 0.015 ~ooo0 0013 ~ 0001 0.013
Alanine Tetrapeptide g0k —, 500K)  Sample W2 0923 —0w: 0892 —0wn  0.893 ~oms  0.856
TICA MMD 0.183 + 000 0.138 + o0 0.155 o000 0.035

Energy TVD 0.091 - o0 0.206 ~o00s  0.087 ~000: 0.398

ALA Hexapeptide Distance TVD  0.018 + oo 0.020 =000 0,010 0001 0.009

(800K — 600K) Sample W2 1.585 =+ 0.00m 1.652 + o012 1.618 ~ oo 1.299

Alanine Hexapéptide TICA MMD 0.088 - 0.004 0.068 - oo 0.042 ~o00:  0.009




Control Diffusion with Replica Exchange
~ reward-tilting: py" < poexp (1)

class condition: balloon, prompt: a blue balloon

HaVVESVEILUVOLLAVER 1E0GEO0S

class condition: pinwheel; prompt: a colorful pinwheel

ﬁiﬁ ERLARSERSES ¥ 5 Al Y &S IR 8 Sk di
class condltl_on Chrzstmas stockmi Ero it ireeﬁhrlstmas stoﬁzg ‘ l‘ _

class condltmn cab, prompt: a yellow cab with dark background

H—ﬁﬂ%ﬂﬁﬂ%ﬁﬁﬁﬁﬁ Iﬁﬁlgﬁ

CREPE lteratlon

Figure 1: Trajectory of images generated using CREPE for prompted reward-tilting on ImageNet-512,
thinned every 8 iterations. After burn-in, the samples align closely with the prompt.



Control Diffusion with Replica Exchange

Composition + reward-tilting: py’ & Hp(()i) exp(7y)

Example of training Trajectory after | PT Trajectory after 10k Trajectory after 50k Trajectory after 100k Trajectory after 101k Trajectory after 150k
trajectories. iteration. PT iterations. PT iterations. PT iterations. PT iteration. PT iterations.

Figure taken from: He, Jiajun, et al. "CREPE: Controlling Diffusion with Replica Exchange." arXiv.



Summary

e Diffusion Model
e Path Measure

* Importance Sampling and SMC / Replica Exchange with Path
Measures

e Control your Diffusion Model



What’s next?
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