Introduction to Diffusion Models and Probabilistic Inference with Path Measures

Jiajun He
University of Cambridge
05/11/2025

Episode 1

Diffusion Models as Probabilistic Models in Path Space

We will discuss:

- Recap of Probability Theory and Probabilistic Models
- Generative Models and Diffusion Models
- Path Measure
- Probabilistic Inference with Path Measures: Control your Generation
- Application Demo & What's Next?

- Random variable (RV):
 - A function mapping from a sample space e.g., {rain tmr, not rain tmr} to a measurable space e.g., {0, 1}.
- Probability mass function (discrete RV), e.g., P(X=1)=0.7

$$P(X=0)=0.3$$

• Probability density function (continuous RV), e.g., $N(x|0,1) \propto \exp(-x^2/2)$

• Joint, Condition, marginal and Bayes' Rule:

$$p(x,y) = p(x)p(y|x) = p(y)p(x|y)$$

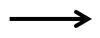
$$p(x) = \int p(x, y) \mathrm{d}x$$

Graphical Model:



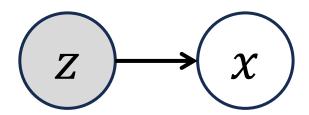
Random Variable

Observed Random Variable

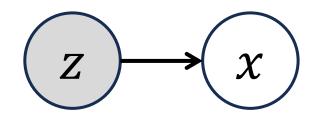


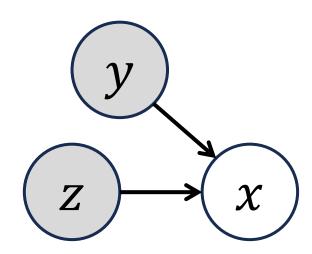
Dependency (conditional distribution)

• Graphical Model:

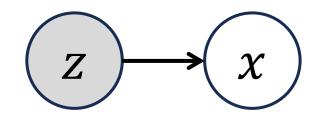


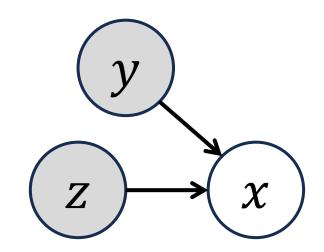
• Graphical Model:

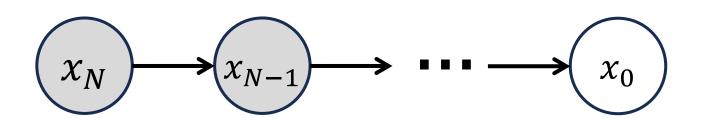




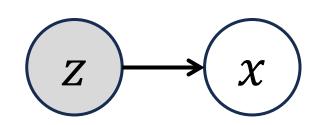
• Graphical Model:







Generative Model:



Prior: p(z)

Likelihood: p(x|z)

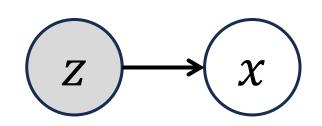
Posterior: $p(z|x) \approx q(z|x)$

Variational Inference:

$$q(z|x)p(x) \approx p(z)p(x|z)$$

i.e.,
$$D_{KL}[q(z|x)p(x) || p(z)p(x|z)]$$

Generative Model:



Prior: p(z)

Likelihood: p(x|z)

Posterior: $p(z|x) \approx q(z|x)$

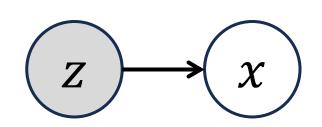
Variational Inference:

$$q(z|x)p(x) \approx p(z)p(x|z)$$

i.e.,
$$D_{KL}[q(z|x)p(x) || p(z)p(x|z)]$$

-> Evidence Lower Bound

Generative Model:



Prior: p(z)

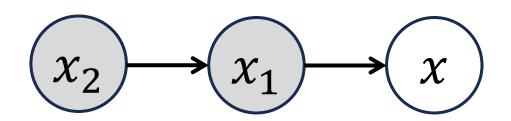
Likelihood: p(x|z)

Posterior: $p(z|x) \approx q(z|x)$

Fix prior and likelihood, infer posterior

Fix prior, learn likelihood and posterior

Fix prior and posterior, learn likelihood



Prior: $p(x_2)p(x_1|x_2)$

Likelihood: $p(x|x_1, x_2) = p(x|x_1)$

Posterior: $p(x_1, x_2|x) \approx q(x_1|x)q(x_2|x_1)$

Variational Inference: $q(x_1|x)q(x_2|x_1)p(x) \approx p(x_2)p(x_1|x_2)p(x|x_1)$

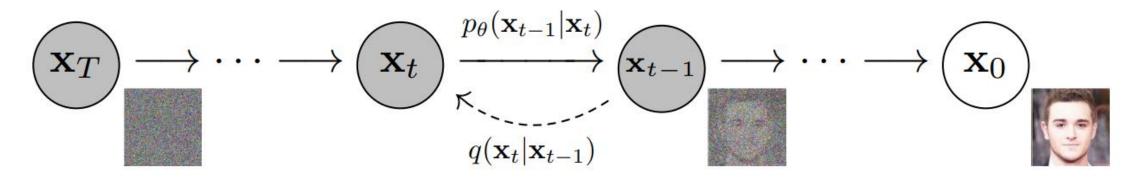


Figure 2: The directed graphical model considered in this work. Figure from [1].

Posterior (data -> noise): $p(x_0)$

 $p(x_0)$

Posterior (data -> noise): $p(x_0)q(x_1|x_0)$

 $q(x_1|x_0)$

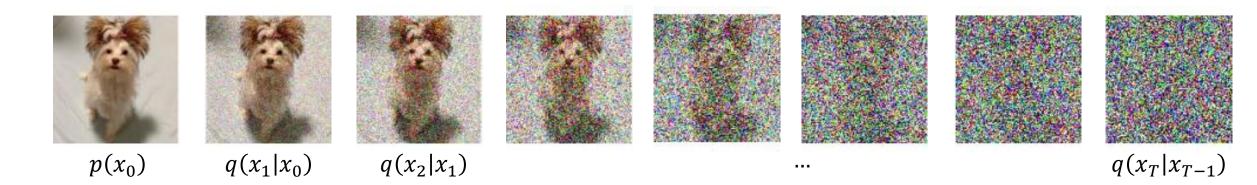
Posterior (data -> noise): $p(x_0)q(x_1|x_0)q(x_2|x_1)$

 $p(x_0)$

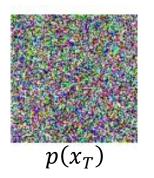
 $q(x_1|x_0)$

 $q(x_2|x_1)$

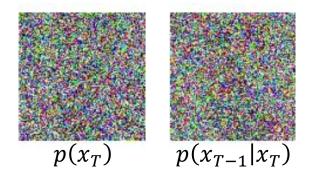
Posterior (data -> noise): $p(x_0)q(x_1|x_0)q(x_2|x_1)$...



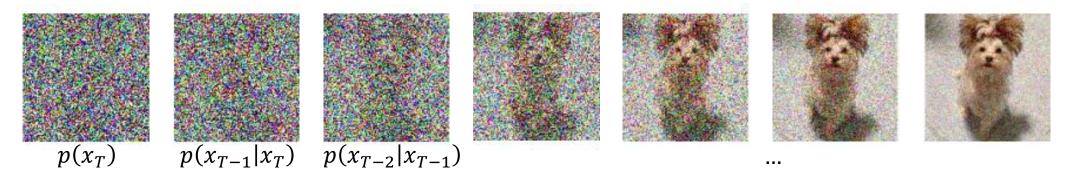
Generation (noise->data): $p(x_T)$



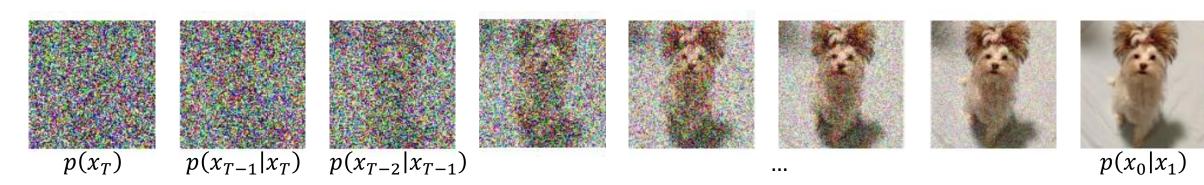
Generation (noise->data): $p(x_T)p(x_{T-1}|x_T)$



Generation (noise->data): $p(x_T)p(x_{T-1}|x_T)$...



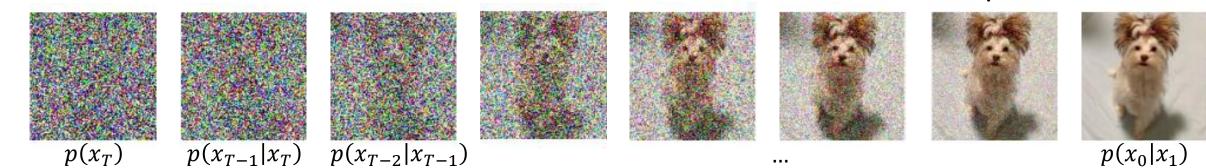
Generation (noise->data): $p(x_T)p(x_{T-1}|x_T) \dots p(x_0|x_1)$

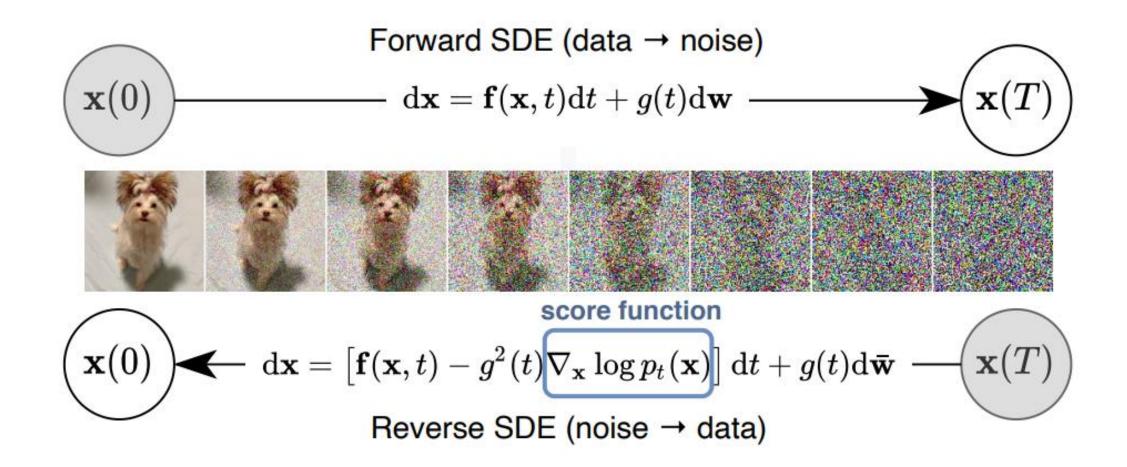


Forward SDE (data -> noise): $x_t = x_t - \beta_t x_t dt + \sqrt{2\beta_t dt} \epsilon$

Backward SDE (noise->data):

$$x_{t'} = x_t + [\beta_t x_t + 2\beta_t \nabla \log p_t(x_t)] dt + \sqrt{2\beta_t dt} \epsilon'$$





[2] Song, Yang, et al. "Score-based generative modeling through stochastic differential equations." ICLR 2021.

Forward SDE (data -> noise): $dx_t = -\beta_t x_t dt + \sqrt{2\beta_t} dW_t$ Backward SDE (noise->data):

$$dx_t = \left[-\beta_t x_t - 2\beta_t \nabla \log p_t(x_t) \right] dt + \sqrt{2\beta_t} dW_t^-$$

Forward SDE (data -> noise): $dx_t = -\beta_t x_t dt + \sqrt{2\beta_t} dW_t$ Backward SDE (noise->data):

$$dx_t = \left[-\beta_t x_t - 2\beta_t \nabla \log p_t(x_t) \right] dt + \sqrt{2\beta_t} dW_t^-$$

The DDPM Kernel is one way to discretise the SDEs.

Forward SDE (data -> noise): $dx_t = -\beta_t x_t dt + \sqrt{2\beta_t} dW_t$ Backward SDE (noise->data):

$$dx_t = \left[-\beta_t x_t - 2\beta_t \nabla \log p_t(x_t) \right] dt + \sqrt{2\beta_t} dW_t^-$$

The DDPM Kernel is one way to discretise the SDEs. Other options exist

```
Forward SDE (data -> noise): dx_t = f_t(x_t)dt + \sigma_t dW_t
Backward SDE (noise->data): dx_t = g_t(x_t)dt + \sigma_t dW_t^-
```

Forward SDE (data -> noise): $dx_t = f_t(x_t)dt + \sigma_t dW_t$ Backward SDE (noise->data): $dx_t = g_t(x_t)dt + \sigma_t dW_t^-$

Euler-Maruyama discretisation

$$x_{t+1} = x_t + f_t(x_t)\Delta t + \sqrt{\sigma_t \Delta t} \epsilon$$

$$x_{t-1} = x_t - g_t(x_t)\Delta t + \sqrt{\sigma_t \Delta t} \epsilon'$$

```
Forward SDE (data -> noise): dx_t = f_t(x_t)dt + \sigma_t dW_t
Backward SDE (noise->data): dx_t = g_t(x_t)dt + \sigma_t dW_t^-
```

```
Posterior (data -> noise): p(x_0)q(x_1|x_0)q(x_2|x_1) ... q(x_T|x_{T-1})
```

Generation (noise->data): $p(x_T)p(x_{T-1}|x_T) \dots p(x_0|x_1)$

Forward SDE (data -> noise): $dx_t = f_t(x_t)dt + \sigma_t dW_t$ Backward SDE (noise->data): $dx_t = g_t(x_t)dt + \sigma_t dW_t^-$

Posterior (data -> noise): $p(x_0)q(x_1|x_0)q(x_2|x_1) ... q(x_T|x_{T-1})$

Generation (noise->data): $p(x_T)p(x_{T-1}|x_T) \dots p(x_0|x_1)$

$$p(x_0)q(x_1|x_0)q(x_2|x_1) \dots q(x_T|x_{T-1}) \approx p(x_T)p(x_{T-1}|x_T) \dots p(x_0|x_1)$$

Forward SDE (data -> noise): $dx_t = f_t(x_t)dt + \sigma_t dW_t$ Backward SDE (noise->data): $dx_t = g_t(x_t)dt + \sigma_t dW_t^-$

Posterior (data -> noise): $p(x_0)q(x_1|x_0)q(x_2|x_1) ... q(x_T|x_{T-1})$

Generation (noise->data): $p(x_T)p(x_{T-1}|x_T) \dots p(x_0|x_1)$

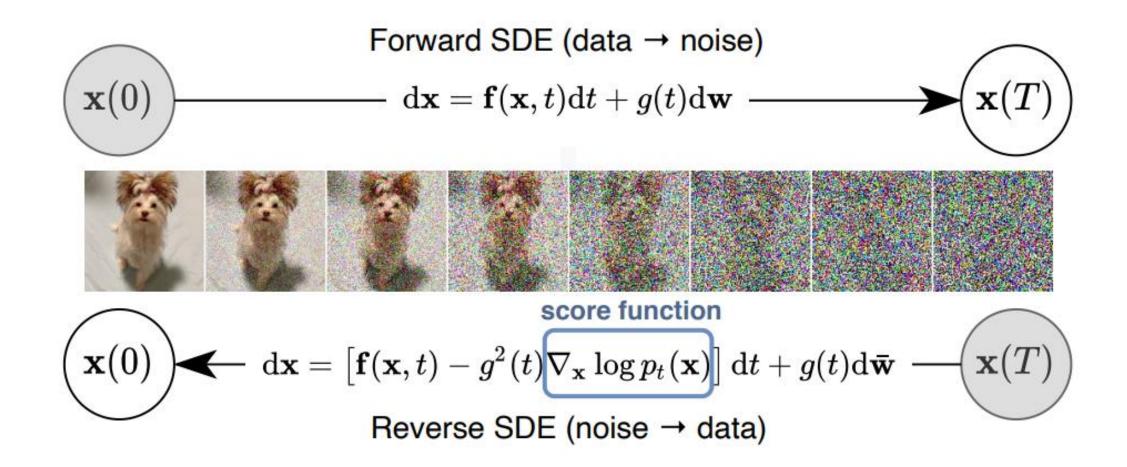
$$p(x_0)q(x_1|x_0)q(x_2|x_1) \dots q(x_T|x_{T-1}) \approx p(x_T)p(x_{T-1}|x_T) \dots p(x_0|x_1)$$

"Forward SDE and backward SDE define the same joint distribution"

Forward SDE (data -> noise): $dx_t = f_t(x_t)dt + \sigma_t dW_t$ Backward SDE (noise->data): $dx_t = g_t(x_t)dt + \sigma_t dW_t^-$

"Forward SDE and backward SDE define the same joint distribution" iff. $g_t = f_t - \sigma_t^2 \nabla \log p_t$

Nelson's relation



[2] Song, Yang, et al. "Score-based generative modeling through stochastic differential equations." ICLR 2021.

Forward SDE (data -> noise): $dx_t = f_t(x_t)dt + \sigma_t dW_t$ Backward SDE (noise->data): $dx_t = g_t(x_t)dt + \sigma_t dW_t^-$

Posterior (data -> noise): $p(x_0)q(x_1|x_0)q(x_2|x_1) ... q(x_T|x_{T-1})$ Generation (noise->data): $p(x_T)p(x_{T-1}|x_T) ... p(x_0|x_1)$

$$p(x_0)q(x_1|x_0)q(x_2|x_1) \dots q(x_T|x_{T-1}) \approx p(x_T)p(x_{T-1}|x_T) \dots p(x_0|x_1)$$

"Forward SDE and backward SDE define the same joint distribution"

Generative Models and Diffusion Models

Forward SDE (data -> noise): $dx_t = f_t(x_t)dt + \sigma_t dW_t$ Backward SDE (noise->data): $dx_t = g_t(x_t)dt + \sigma_t dW_t^-$

Posterior (data -> noise): $p(x_0)q(x_1|x_0)q(x_2|x_1) ... q(x_T|x_{T-1})$

Generation (noise->data): $p(x_T)p(x_{T-1}|x_T) \dots p(x_0|x_1)$

$$p(x_0)q(x_1|x_0)q(x_2|x_1) \dots q(x_T|x_{T-1}) \approx p(x_T)p(x_{T-1}|x_T) \dots p(x_0|x_1)$$

"Forward SDE and backward SDE define the same joint distribution" same joint distribution over path x_0, x_1, \dots, x_T

Diffusion Models and Path Measures

Forward SDE (data -> noise): $dx_t = f_t(x_t)dt + \sigma_t dW_t$ Backward SDE (noise->data): $dx_t = g_t(x_t)dt + \sigma_t dW_t^-$

Posterior (data -> noise): $p(x_0)q(x_1|x_0)q(x_2|x_1) ... q(x_T|x_{T-1})$

Generation (noise->data): $p(x_T)p(x_{T-1}|x_T) \dots p(x_0|x_1)$

$$p(x_0)q(x_1|x_0)q(x_2|x_1) \dots q(x_T|x_{T-1}) \approx p(x_T)p(x_{T-1}|x_T) \dots p(x_0|x_1)$$

"Forward SDE and backward SDE define the same joint distribution" same joint distribution over path x_0, x_1, \dots, x_T

Path Measures and Ito's Calculus

Forward SDE (data -> noise): $dx_t = f_t(x_t)dt + \sigma_t dW_t$ Backward SDE (noise->data): $dx_t = g_t(x_t)dt + \sigma_t dW_t^-$

$$\lim \frac{p_0(x_0)q(x_1|x_0)q(x_2|x_1)...q(x_T|x_{T-1})}{p_T(x_T)p(x_{T-1}|x_T)...p(x_0|x_1)}$$

$$= \frac{p_0(X_0)}{p_T(X_1)} \exp \left(\int \frac{f_t(X_t)}{\sigma_t^2} \cdot dX_t - \frac{f_t^2(X_t)}{2\sigma_t^2} dt - \int \underbrace{\frac{g_t(X_t)}{\sigma_t^2} \cdot dX_t}_{T-1} + \underbrace{\frac{g_t^2(X_t)}{2\sigma_t^2}}_{T-1} dt \right)$$

Backward Ito Integral

$$\int a_t(X_t) \cdot \overleftarrow{dX_t} = \lim \sum a_{n+1}(X_{n+1}) \cdot (X_{n+1} - X_n)$$

Episode 1

Diffusion Models are

- *†* Deep hierarchical VAEs
 - ***** Reverse SDEs

Path Measure is just

- Sequence of Gaussian densities (to the limit)
 - 👉 something involving Ito's integral 🌋

More Math Details?

"Density Ratio" and Radon-Nikodym Derivative

Don't freak out about the name Radon-Nikodym Derivative

--- it's just the "density ratio"

 $rac{d}{d}$ Very informally, let **P** and **Q** be two measures with density p and q, their density ratio is the **Radon-Nikodym Derivative (RND)**, denoted as

$$\frac{p(x)}{q(x)} = \frac{\mathrm{d}\mathbf{P}}{\mathrm{d}\mathbf{Q}}(x)$$

from the density is essentially the RND w.r.t to Lebesgue measure

$$p(x) = \frac{\mathrm{d}\mathbf{P}}{\mathrm{d}\mu}(x), q(x) = \frac{\mathrm{d}\mathbf{Q}}{\mathrm{d}\mu}(x)$$

**** The second of the second o**

Stochastic Differential Equations

Forward SDE

$$dX_t = f(X_t, t)dt + \sigma_t dW_t$$

Backward SDE

$$dX_t = g(X_t, t)dt + \sigma_t \overleftarrow{dW_t}$$

Intuitive understanding by **Eular-Maruyama Discretisation**:

$$X_{n+1} - X_n = f(X_n, t_n) \Delta t + \sigma_n \sqrt{\Delta t} \epsilon$$

$$X_{n+1} - X_n = g(X_{n+1}, t_{n+1}) \Delta t + \sigma_{n+1} \sqrt{\Delta t} \epsilon'$$

$$X_{n+1} - X_n = f(X_n, t_n) \Delta t + \sigma_n \sqrt{\Delta t} \epsilon$$

- ? for a **discretised** path sample $\{X_1, X_2, ... X_N\}$, what is its density?
- Transition density: $p(X_{n+1}|X_n) = N(X_{n+1}|X_n + f(X_n, t_n)\Delta t, \sigma_n^2 \Delta t)$
- Arr Full path density: $p(X_1, X_2, ... X_N) = p(X_1) \prod p(X_{n+1} | X_n)$

Now take a closer look at

$$N(X_{n+1}|X_n + f(X_n, t_n)\Delta t, \sigma_n^2 \Delta t)$$

$$\log p = \frac{-(\sigma_n \sqrt{\Delta t} \epsilon)^2}{2\sigma_n^2 \Delta t} - \log \sigma_n - \frac{1}{2} \log \Delta t + C$$

•• density diverge when $\Delta t \rightarrow 0$

But what if we have another SDE:

$$p_1 = N(X_{n+1}|X_n + f(X_n, t_n)\Delta t, \sigma_n^2 \Delta t)$$

$$p_2 = N(X_{n+1}|X_n + h(X_n, t_n)\Delta t, \sigma_n^2 \Delta t)$$

$$\log p_1 - \log p_2 = \frac{(2X_{n+1} - 2X_n - h\Delta t - f\Delta t)(h\Delta t - f\Delta t)}{2\sigma_n^2 \Delta t}$$

 \red{varphi} density ratio did NOT diverge when $\Delta t \rightarrow 0$

For solution X to one SDE: $\mathrm{d}X_t = f(X_t, t)\mathrm{d}t + \sigma_t\mathrm{d}W_t$, we cannot define its density $p(X_0)\prod p(X_{t+\mathrm{d}t}|X_t)$

But with another SDE: $dX_t = h(X_t, t)dt + \sigma_t dW_t$,

we can define density ratio (Radon-Nikodym Derivative) as a whole:

$$\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}\mathbf{Q}}(X)$$

Forward-forward RND and Girsanov

$$\mathbf{P}: dX_t = f(X_t, t)dt + \sigma_t dW_t, X_0 \sim p_0$$

$$\mathbf{Q}: dX_t = h(X_t, t)dt + \sigma_t dW_t, X_0 \sim q_0$$

$$\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}\mathbf{Q}}(X) \approx \frac{p(X_0) \prod N_1(X_{n+1}|X_n)}{q(X_0) \prod N_2(X_{n+1}|X_n)}$$

Forward-forward RND and Girsanov

$$\mathbf{P}: dX_t = f(X_t, t)dt + \sigma_t dW_t, X_0 \sim p_0$$

$$\mathbf{Q}: dX_t = h(X_t, t)dt + \sigma_t dW_t, X_0 \sim q_0$$

$$\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}\mathbf{Q}}(X) = \frac{p(X_0)}{q(X_0)} \exp\left(\int \frac{f_t(X_t)}{\sigma_t^2} \cdot \mathrm{d}X_t - \frac{f_t^2(X_t)}{2\sigma_t^2} \, \mathrm{d}t - \int \frac{g_t(X_t)}{\sigma_t^2} \cdot \mathrm{d}X_t + \frac{g_t^2(X_t)}{2\sigma_t^2} \, \mathrm{d}t\right)$$
Forward Ito Integral $\int a_t(X_t) \cdot \mathrm{d}X_t = \lim \sum a_n(X_n) \cdot (X_{n+1} - X_n)$
Initial density ratio

Forward-backward RND

$$\mathbf{P}: dX_t = f(X_t, t)dt + \sigma_t dW_t, X_0 \sim p_0$$

$$\mathbf{Q}: dX_t = g(X_t, t)dt + \sigma_t dW_t, X_1 \sim q_1$$

$$\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}\mathbf{\overline{Q}}}(X) \approx \frac{p_0(X_0) \prod N_1(X_{n+1}|X_n)}{q_1(X_1) \prod N_2(X_n|X_{n+1})}$$

Forward-backward RND

$$\mathbf{P}: dX_t = f(X_t, t)dt + \sigma_t dW_t, X_0 \sim p_0$$

$$\mathbf{Q}: dX_t = g(X_t, t)dt + \sigma_t dW_t, X_1 \sim q_1$$

$$\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}\mathbf{\overline{Q}}}(X) = \underbrace{\frac{p_0\left(X_0\right)}{q_1(X_1)}}_{\text{Initial densities}} \exp\left(\int \frac{f_t(X_t)}{\sigma_t^2} \cdot \mathrm{d}X_t - \underbrace{\frac{f_t^2(X_t)}{2\sigma_t^2}}_{\text{Initial densities}} \cdot \frac{g_t(X_t)}{\sigma_t^2} \cdot \underbrace{\mathrm{d}X_t}_{\text{Initial densities}} + \underbrace{\frac{g_t^2(X_t)}{2\sigma_t^2}}_{\text{Backward Ito Integral}} \cdot \underbrace{\mathrm{d}X_t}_{\text{Initial densities}} + \underbrace{\frac{g_t^2(X_t)}{2\sigma_t^2}}_{\text{Initial densities}} \cdot \underbrace{\mathrm{d}X_t}_{\text{Initial densities}} \cdot \underbrace{\mathrm{d}X_t}_{\text{Initial densities}} + \underbrace{\frac{g_t^2(X_t)}{2\sigma_t^2}}_{\text{Initial densities}} \cdot \underbrace{\mathrm{d}X_t}_{\text{Initial densities}} \cdot \underbrace{\mathrm{d}X_t}_{\text{Initial densities}} + \underbrace{\frac{g_t^2(X_t)}{2\sigma_t^2}}_{\text{Initial densities}} \cdot \underbrace{\mathrm{d}X_t}_{\text{Initial densities}} + \underbrace{\frac{g_t^2(X_t)}{2\sigma_t^2}}_{\text{Initial densities}} + \underbrace{\frac{g_t^2(X_t$$

$$\int a_t(X_t) \cdot \overleftarrow{dX_t} = \lim \sum a_{n+1}(X_{n+1}) \cdot (X_{n+1} - X_n)$$

Forward-backward RND

$$\mathbf{P}: dX_t = f(X_t, t)dt + \sigma_t dW_t, X_0 \sim p_0$$

$$\mathbf{Q}: dX_t = g(X_t, t)dt + \sigma_t dW_t, X_1 \sim q_1$$

$$\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}\mathbf{\overline{Q}}}(X) = \underbrace{\frac{p_0(X_0)}{q_1(X_1)}}_{\text{Initial densities}} \exp\left(\int \frac{f_t(X_t)}{\sigma_t^2} \cdot \mathrm{d}X_t - \frac{f_t^2(X_t)}{2\sigma_t^2} \mathrm{d}t - \int \frac{g_t(X_t)}{\sigma_t^2} \cdot \mathbf{\overline{d}X_t} + \frac{g_t^2(X_t)}{2\sigma_t^2} \mathrm{d}t\right)$$

$$\lim \underbrace{\frac{\prod N_1(X_{n+1}|X_n)}{\prod N_2(X_n|X_{n+1})}}_{\text{Initial densities}}$$

A Side Note on Stochastic Intergrals

Ito forward integral

$$\int a_t(X_t) \cdot dX_t = \lim \sum a_n(X_n) \cdot (X_{n+1} - X_n)$$

Ito backward integral

$$\int a_t(X_t) \cdot \overleftarrow{dX_t} = \lim \sum a_{n+1}(X_{n+1}) \cdot (X_{n+1} - X_n)$$

Stratonovich integral

$$\int a_t(X_t) \circ dX_t = \lim \sum \frac{a_n(X_n) + a_{n+1}(X_{n+1})}{2} \cdot (X_{n+1} - X_n)$$

A Side Note on Stochastic Intergrals

Ito forward integral

$$\int a_t(X_t) \cdot dX_t = \lim \sum a_n(X_n) \cdot (X_{n+1} - X_n)$$

Ito backward integral

$$\int a_t(X_t) \cdot \overleftarrow{dX_t} = \lim \sum a_{n+1}(X_{n+1}) \cdot (X_{n+1} - X_n)$$

Conversion rule:

$$\int a_t(X_t) \cdot dX_t - \int a_t(X_t) \cdot \overleftarrow{dX_t} = -\int \sigma_t^2 \nabla \cdot a_t dt$$

Time-reversal and Nelson's relation

$$\mathbf{P}: dX_t = f(X_t, t)dt + \sigma_t dW_t, X_0 \sim p_0
\mathbf{Q}: dX_t = g(X_t, t)dt + \sigma_t dW_t, X_1 \sim p_1$$

$$\mathbf{\overline{Q}} = \mathbf{P}, \text{i. e. ,} \frac{\overline{\mathrm{d}\mathbf{Q}}}{\mathrm{d}\mathbf{P}} = 1$$
iff
$$g(\cdot, t) = f(\cdot, t) - \sigma_t^2 \nabla \log p_t(\cdot)$$

Time-reversal and Nelson's relation

$$\mathbf{P}: dX_t = f(X_t, t)dt + \sigma_t dW_t, X_0 \sim p_0
\mathbf{Q}: dX_t = g(X_t, t)dt + \sigma_t dW_t, X_1 \sim p_1$$

$$\overleftarrow{\mathbf{Q}} = \mathbf{P}, \text{i. e., } \overleftarrow{\frac{d\mathbf{Q}}{d\mathbf{P}}} = 1$$
iff
$$g(\cdot, t) = f(\cdot, t) - \sigma_t^2 \nabla \log p_t(\cdot)$$

score

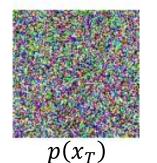
e.g., 0 in VE process

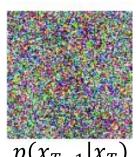
Episode 2

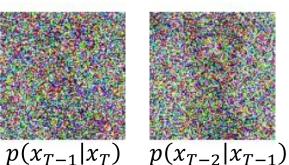
Control Generation with Sequential Monte Carlo in Path Space

Backward SDE (noise->data):

$$x_{t'} = x_t + [\beta_t x_t + 2\beta_t \nabla \log p_t(x_t)] dt + \sqrt{2\beta_t dt} \epsilon'$$



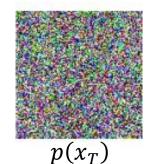


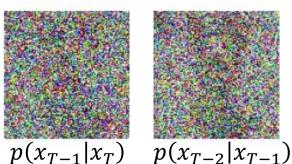


 $p(x_0|x_1)$

Backward SDE (noise->data):

$$x_{t'} = x_t + [\beta_t x_t + 2\beta_t \nabla \log p_t(x_t)] dt + \sqrt{2\beta_t dt} \epsilon'$$





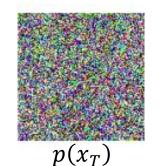
 $p(x_0|x_1)$

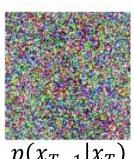
What if I want to generate samples:

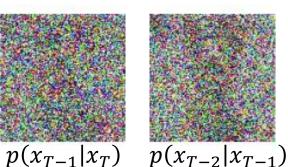
- ****** satisfying certain constraint
- satisfying certain reward
- **t** composing properties of two diffusion models
- has sharper distribution

Backward SDE (noise->data):

$$x_{t'} = x_t + [\beta_t x_t + 2\beta_t \nabla \log p_t(x_t)] dt + \sqrt{2\beta_t dt} \epsilon'$$







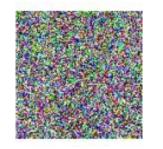
 $p(x_0|x_1)$

What if I want to generate samples:

- f satisfying certain constraint $q(x_0) \propto p(x_0) 1\{x_0 \in \text{constraint family}\}$
- $\stackrel{\longleftarrow}{=}$ satisfying certain reward $q(x_0) \propto p(x_0) \exp(r(x_0))$
- $\stackrel{\leftarrow}{=}$ composing properties of two diffusion models $q(x_0) \propto p(x_0)p'(x_0)$
- $\stackrel{\longleftarrow}{}$ has sharper distribution $q(x_0) \propto p(x_0)^{\alpha}$

Backward SDE (noise->data):

$$x_{t'} = x_t + [\beta_t x_t + 2\beta_t \nabla \log p_t(x_t)] dt + \sqrt{2\beta_t dt} \epsilon'$$



Options:

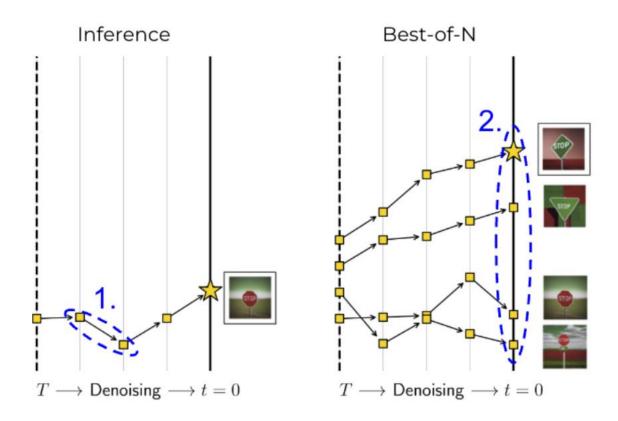
- Generate N samples, find the best set of samples

Backward SDE (noise->data):

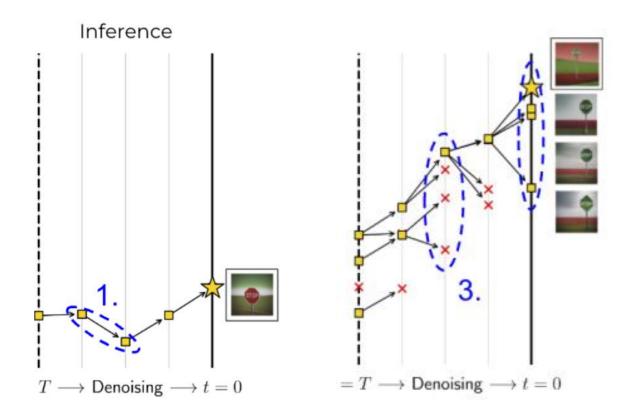
$$x_{t'} = x_t + [\beta_t x_t + 2\beta_t \nabla \log p_t(x_t)] dt + \sqrt{2\beta_t dt} \epsilon'$$

Options:

- Generate N samples, find the best set of samples
- Generate n samples at each step, find the best set of samples for next step



Singhal, Raghav, et al. "A general framework for inference-time scaling and steering of diffusion models." ICML 2025



Singhal, Raghav, et al. "A general framework for inference-time scaling and steering of diffusion models." ICML 2025

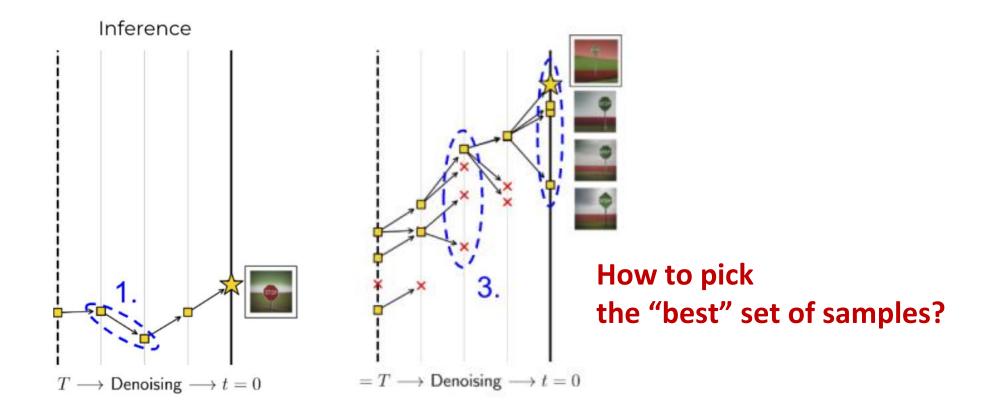


Figure taken from

Singhal, Raghav, et al. "A general framework for inference-time scaling and steering of diffusion models." ICML 2025

We are able to draw sample from q(x)But we want to draw sample from p(x)HOW?

We are able to draw sample from q(x) --- proposal But we want to draw sample from p(x) --- target HOW?

We are able to draw sample from q(x) --- proposal But we want to draw sample from p(x) --- target HOW?

$$E_p[f(x)] = E_q \left[f(x) \frac{p(x)}{q(x)} \right]$$

We are able to draw sample from q(x) --- proposal But we want to draw sample from p(x) --- target HOW?

$$E_p[f(x)] = E_q \left[f(x) \frac{p(x)}{q(x)} \right]$$

Importance Weight

We are able to draw sample from q(x) --- proposal But we want to draw sample from p(x) --- target HOW?

$$E_p[f(x)] = E_q \left[f(x) \frac{p(x)}{q(x)} \right]$$

Importance Weight

- \mathbb{P} Requirements on q(x): can sample & eval density
- \mathbb{P} Requirements on p(x): can eval density

We are able to draw sample from q(x) --- proposal But we want to draw sample from p(x) --- target

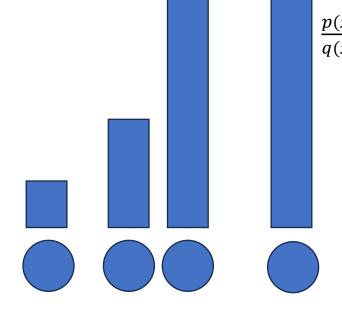
- 1. Draw $x_1, x_2, \dots, x_N \sim q$
- 2. Calculate $\frac{p(x)}{q(x)}$ for all of the *N* samples
- 3. Draw $i_1, i_2, \dots, i_M \sim \text{Cat}\left(\frac{p(x_1)}{q(x_1)}, \frac{p(x_2)}{q(x_2)}, \dots, \frac{p(x_N)}{q(x_N)}\right)$
- 4. Return $x_{i_1}, x_{i_2}, \dots, x_{i_M}$

We are able to draw sample from q(x) --- proposal But we want to draw sample from p(x) --- target

- 1. Draw $x_1, x_2, \dots, x_N \sim q$
- 2. Calculate $\frac{p(x)}{q(x)}$ for all of the *N* samples
- 3. Draw $i_1, i_2, \dots, i_M \sim \text{Cat}\left(\frac{p(x_1)}{q(x_1)}, \frac{p(x_2)}{q(x_2)}, \dots, \frac{p(x_N)}{q(x_N)}\right)$
- 4. Return $x_{i_1}, x_{i_2}, \dots, x_{i_M}$

We are able to draw sample from q(x) --- proposal But we want to draw sample from p(x) --- target

- 1. Draw $x_1, x_2, \dots, x_N \sim q$
- 2. Calculate $\frac{p(x)}{q(x)}$ for all of the *N* samples
- 3. Draw $i_1, i_2, \dots, i_M \sim \text{Cat}\left(\frac{p(x_1)}{q(x_1)}, \frac{p(x_2)}{q(x_2)}, \dots, \frac{p(x_N)}{q(x_N)}\right)$
- 4. Return $x_{i_1}, x_{i_2}, \dots, x_{i_M}$



We are able to draw sample from q(x) --- proposal But we want to draw sample from p(x) --- target

- 1. Draw $x_1, x_2, \dots, x_N \sim q$
- 2. Calculate $\frac{p(x)}{q(x)}$ for all of the *N* samples
- 3. Draw $i_1, i_2, \dots, i_M \sim Cat\left(\frac{p(x_1)}{q(x_1)}, \frac{p(x_2)}{q(x_2)}, \dots, \frac{p(x_N)}{q(x_N)}\right)$
- 4. Return x_{i_1} , x_{i_2} , \cdots , x_{i_M}

We are able to draw sample from q(x) --- proposal But we want to draw sample from p(x) --- target

- 1. Draw $x_1, x_2, \dots, x_N \sim q$
- 2. Calculate $\frac{p(x)}{q(x)}$ for all of the *N* samples
- 3. Draw $i_1, i_2, \dots, i_M \sim \text{Cat}\left(\frac{p(x_1)}{q(x_1)}, \frac{p(x_2)}{q(x_2)}, \dots, \frac{p(x_N)}{q(x_N)}\right)$
- 4. Return $x_{i_1}, x_{i_2}, \dots, x_{i_M}$

 $\frac{p(x)}{q(x)}$

We are able to draw sample from q(x) --- proposal But we want to draw sample from p(x) --- target

- 1. Draw $x_1, x_2, \dots, x_N \sim q$
- 2. Calculate $\frac{p(x)}{q(x)}$ for all of the *N* samples
- 3. Draw $i_1, i_2, \dots, i_M \sim \text{Cat}\left(\frac{p(x_1)}{q(x_1)}, \frac{p(x_2)}{q(x_2)}, \dots, \frac{p(x_N)}{q(x_N)}\right)$
- 4. Return $x_{i_1}, x_{i_2}, \dots, x_{i_M}$

Importance Re-sampling

We are able to draw sample from q(x) --- proposal But we want to draw sample from p(x) --- target

Then...

We are able to draw sample from q(y|x) --- proposal But we want to draw sample from p(y) --- target

We are able to draw sample from q(x) --- proposal But we want to draw sample from p(x) --- target

Then...

We are able to draw sample from q(y|x) --- proposal But we want to draw sample from p(y) --- target

Apply the previous procedure again!

- 1. Draw $y_1, y_2, \dots, y_N \sim q(y|x)$
- Bu 2. Calculate $\frac{p(y)p(x|y)}{p(x)q(y|x)}$ for all of the N samples
- 3. Draw $i_1, i_2, \cdots, i_M \sim Cat\left(\frac{p(y_1)p(x_1|y_1)}{p(x_1)q(y_1|x_1)}, \frac{p(y_2)p(x_2|y_2)}{p(x_2)q(y_2|x_2)}, \cdots, \frac{p(y_N)p(x_N|y_N)}{p(x_N)q(y_N|x_N)}\right)$ 4. Return $y_{i_1}, y_{i_2}, y_{i_M}$.

We are able to draw sample from q(y|x) --- proposal But we want to draw sample from p(y) --- target

Apply the previous procedure again!

- 1. Draw y_1, y_2, \dots, y_N q(y|x)2. Calculate $\frac{p(y)p(x|y)}{p(x)q(y|x)}$ for all of the N samples
- $3. \quad \text{Draw } i_1, i_2, \cdots, i_M \sim Cat\left(\frac{p(y_1)p(x_1|y_1)}{p(x_1)q(y_1|x_1)}, \frac{p(y_2)p(x_2|y_2)}{p(x_2)q(y_2|x_2)}, \cdots, \frac{p(y_N)p(x_N|y_N)}{p(x_N)q(y_N|x_N)}\right)$ $4. \quad \text{Return } y_{i_1}, y_{i_2}, y_{i_M}.$

We are able to draw sample from q(y|x) --- proposal But we want to draw sample from p(y) --- target

Apply the previous procedure again!

We are able to draw sample from $q(x_N)$, $q(x_{N-1}|x_N)$, ... --- proposals But we want to draw sample from $p(x_N)$, $p(x_{N-1})$, ... --- targets

Apply the previous procedure again and again and again!

Sequential Monte Carlo / Particle Filtering

Modified Diffusion process

Importance Sampling and Sequential Mche Carlo

We are able to draw sample from $q(x_N)$, $q(x_{N-1}|x_N)$, ... --- proposals But we want to draw sample from $p(x_N)$, $p(x_{N-1})$, ... --- targets

Apply the previous procedure again and again and again!

Sequential Monte Carlo / Particle Filtering

We are able to draw sample from $q(x_N)$, $q(x_{N-1}|x_N)$, ... --- proposals But we want to draw sample from $p(x_N)$, $p(x_{N-1})$, ... --- targets

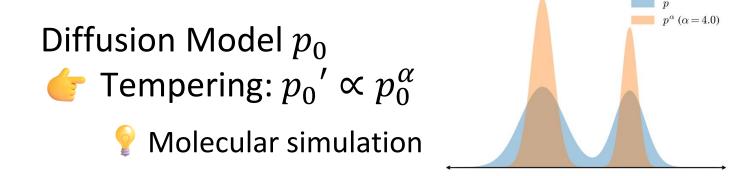
Apply the previous procedure again and again!

Sequential Monte Carlo / Particle Filtering

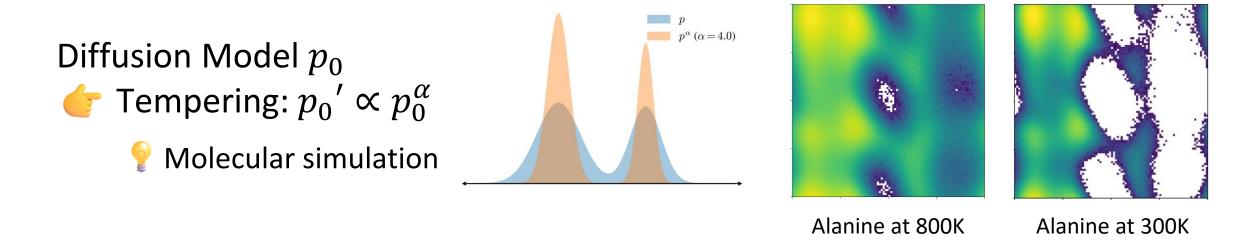
Modified Diffusion Marginal

What kind of control we want to impose to our diffusion model? What does this mean in terms of density functions?

What kind of control we want to impose to our diffusion model? What does this mean in terms of density functions?



What kind of control we want to impose to our diffusion model? What does this mean in terms of density functions?



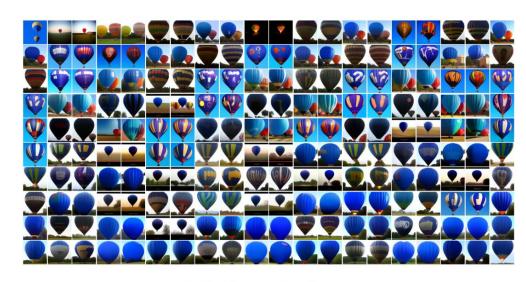
What kind of control we want to impose to our diffusion model? What does this mean in terms of density functions?

Diffusion Model p_0

Molecular simulation

 \leftarrow Tilting: $p_0' \propto p_0 \exp(r_0(x_0))$

Inpainting, infilling (motif-scaffolding), reward-tilting, etc

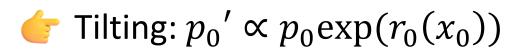


(a) **class:** balloon; **Reward prompt:** a blue balloon.

What kind of control we want to impose to our diffusion model? What does this mean in terms of density functions?

Diffusion Model p_0

Molecular simulation



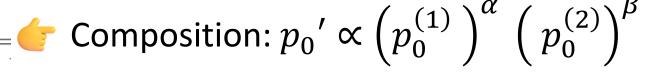
Inpainting, infilling (motif-scaffolding), reward-tilting, etc

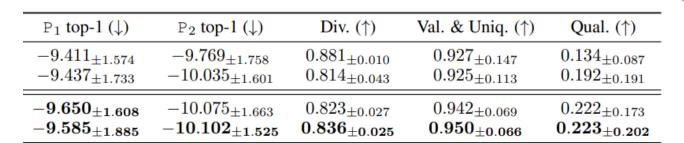
$$\leftarrow$$
 Composition: ${p_0}' \propto \left(p_0^{(1)}\right)^{\alpha} \left(p_0^{(2)}\right)^{\beta}$

Stitching / composing model properties e.g., ligand binding to two protein pockets

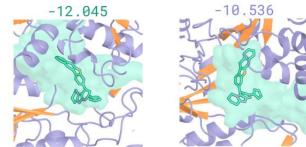
What kind of control we want to impose to our diffusion model? What does this mean in terms of density functions?

	Better than known. (†)	$(P_1 * P_2) (\uparrow)$	$\max(P_1, P_2) (\downarrow)$
Sum score FKC	$0.345_{\pm 0.288} \\ 0.608_{\pm 0.390}$	$65.110_{\pm 17.802} \\ 82.371_{\pm 24.928}$	$-7.222_{\pm 1.348} \\ -8.296_{\pm 1.450}$
RNC $(c_a = 1, c_b = 0.0)$ RNC $(c_a = 1, c_b = 0.2)$	$0.589_{\pm 0.413} \ 0.649_{\pm 0.356}$	$81.186_{\pm 26.158} \\ 81.771_{\pm 24.673}$	$-8.122_{\pm 1.588} \\ -8.112_{\pm 1.660}$





Stitching / composing model properties e.g., ligand binding to two protein pockets

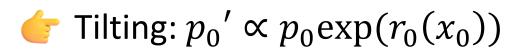


He, Jiajun, et al. "RNE: a plug-and-play framework for diffusion density estimation and inference-time control." arXiv. Skreta, Marta, et al. "Feynman-kac correctors in diffusion: Annealing, guidance, and product of experts." ICML 2025.

What kind of control we want to impose to our diffusion model? What does this mean in terms of density functions?

Diffusion Model p_0

Molecular simulation



Inpainting, infilling (motif-scaffolding), reward-tilting, etc

$$\leftarrow$$
 Composition: ${p_0}' \propto \left(p_0^{(1)}\right)^{\alpha} \left(p_0^{(2)}\right)^{\beta}$

Stitching / composing model properties e.g., ligand binding to two protein pockets

Sequential Monte Carlo Weight Calculation

Diffusion model generates $p_T(x_T)$, $p_{T-1}(x_{T-1})$, ..., $p_0(x_0)$ with denoising kernels $p(x_{T-1}|x_T)$, $p(x_{T-2}|x_{T-1})$, ..., $p(x_0|x_1)$

We want to generate from $p_T'(x_T), p_{T-1}'(x_{T-1}), \dots, p_0'(x_0)$ with proposal kernels $p'(x_{T-1}|x_T), p'(x_{T-2}|x_{T-1}), \dots, p'(x_0|x_1)$

$$\frac{p'(x_{t-1})p(x_t|x_{t-1})}{p'(x_t)p'(x_{t-1}|x_t)}$$

More Math?

Forward-backward RND

$$\mathbf{P}: dX_t = f(X_t, t)dt + \sigma_t dW_t, X_0 \sim p_0$$

$$\mathbf{Q}: dX_t = g(X_t, t)dt + \sigma_t dW_t, X_1 \sim q_1$$

$$\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}\mathbf{\overline{Q}}}(X) = \underbrace{\frac{p_0(X_0)}{q_1(X_1)}}_{\text{Initial densities}} \exp\left(\int \frac{f_t(X_t)}{\sigma_t^2} \cdot \mathrm{d}X_t - \frac{f_t^2(X_t)}{2\sigma_t^2} \mathrm{d}t - \int \frac{g_t(X_t)}{\sigma_t^2} \cdot \overline{\mathrm{d}X_t} + \frac{g_t^2(X_t)}{2\sigma_t^2} \mathrm{d}t\right)$$

$$\lim \underbrace{\frac{\prod N_1(X_{n+1}|X_n)}{\prod N_2(X_n|X_{n+1})}}_{\text{Initial densities}}$$

For simplicity, we hereafter call

$$R_f^g(X) = \exp\left(-\int \frac{f_t(X_t)}{\sigma_t^2} \cdot dX_t + \frac{f_t^2(X_t)}{2\sigma_t^2} dt + \int \frac{g_t(X_t)}{\sigma_t^2} \cdot \overleftarrow{dX_t} - \frac{g_t^2(X_t)}{2\sigma_t^2} dt\right)$$

Forward-backward RND

$$\mathbf{P}: dX_t = f(X_t, t)dt + \sigma_t dW_t, X_0 \sim p_0$$

$$\mathbf{Q}: dX_t = g(X_t, t)dt + \sigma_t dW_t, X_1 \sim q_1$$

$$\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}\mathbf{\overline{Q}}}(X) = \underbrace{\frac{p_0(X_0)}{q_1(X_1)}}_{\text{Initial densities}} \exp\left(\int \frac{f_t(X_t)}{\sigma_t^2} \cdot \mathrm{d}X_t - \frac{f_t^2(X_t)}{2\sigma_t^2} \mathrm{d}t - \int \frac{g_t(X_t)}{\sigma_t^2} \cdot \mathbf{\overline{d}X_t} + \frac{g_t^2(X_t)}{2\sigma_t^2} \mathrm{d}t\right)$$

$$\lim \underbrace{\frac{\prod N_1(X_{n+1}|X_n)}{\prod N_2(X_n|X_{n+1})}}_{\text{Initial densities}}$$

For simplicity, we hereafter call

$$R_f^g(X) = \lim \frac{\prod N_g(X_n|X_{n+1})}{\prod N_h(X_{n+1}|X_n)}$$

Given a pretrained model for p_0 , generate samples $\sim p_0(x) \exp(r(x))$

Strategy:

- Strategy:
 - Choose a heuristic guidance process;

Rroblem Setup:

- Choose a heuristic guidance process;
- Define a sequence of intermediate target densities $q_t \propto p_t(x_t) \exp(r_t(x_t))$;

Rroblem Setup:

- Choose a heuristic guidance process;
- Define a sequence of intermediate target densities $q_t \propto p_t(x_t) \exp(r_t(x_t))$;
- Do importance-resampling to move samples at $q_{t'}$ to q_t (t < t')

Rroblem Setup:

Given a pretrained model for p_0 , generate samples $\sim p_0(x) \exp(r(x))$

Strategy:

- Choose a heuristic guidance process;
- Define a sequence of intermediate target densities $q_t \propto p_t(x_t) \exp(r_t(x_t))$;
- Do importance-resampling to move samples at $q_{t'}$ to q_t (t < t')

Rroblem Setup:

Given a pretrained model for p_0 , generate samples $\sim p_0(x) \exp(r(x))$

Strategy:

- Choose a heuristic guidance process;
- Define a sequence of intermediate target densities $q_t \propto p_t(x_t) \exp(r_t(x_t))$;
- Do importance-resampling to move samples at $q_{t'}$ to q_t (t < t')

We already learned about this pipeline from Raghav (Feynman-Kac Steering); Marta (Feynman-Kac Corrector); Luhuan (RDSMC) during the talks

have $\{x\} \sim q_{\tau'}$, how to obtain exact sample $\{x\} \sim q_{\tau}$

have $\{x\} \sim q_{\tau'}$, how to obtain exact sample $\{x\} \sim q_{\tau}$

- Define a sequence of intermediate target densities $q_t \propto p_t(x_t) \exp(r_t(x_t))$;
- Do importance-resampling

have $\{x\} \sim q_{\tau'}$, how to obtain exact sample $\{x\} \sim q_{\tau}$

$$dX_t = (\text{score} + \text{guidance}) dt + \sigma_t \overleftarrow{dW_t}, \qquad X_{\tau'} \sim q_{\tau'}$$

- Define a sequence of intermediate target densities $q_t \propto p_t(x_t) \exp(r_t(x_t))$;
- Do importance-resampling

have $\{x\} \sim q_{\tau'}$, how to obtain exact sample $\{x\} \sim q_{\tau}$

"proposal"
$$dX_t = a(X_t, t)dt + \sigma_t \overleftarrow{dW_t}, \qquad X_{\tau'} \sim q_{\tau'}$$

- Define a sequence of intermediate target densities $q_t \propto p_t(x_t) \exp(r_t(x_t))$;
- Do importance-resampling

have $\{x\} \sim q_{\tau'}$, how to obtain exact sample $\{x\} \sim q_{\tau}$

"proposal"
$$dX_t = a(X_t, t)dt + \sigma_t \overleftarrow{dW_t}, \qquad X_{\tau'} \sim q_{\tau'}$$
 "target"? $X_{\tau} \sim q_{\tau}$

- Define a sequence of intermediate target densities $q_t \propto p_t(x_t) \exp(r_t(x_t))$;
- Do importance-resampling

have $\{x\} \sim q_{\tau'}$, how to obtain exact sample $\{x\} \sim q_{\tau}$

```
"proposal" dX_t = a(X_t, t)dt + \sigma_t \overline{dW_t}, \qquad X_{\tau'} \sim q_{\tau'}
"target"? dX_t = b(X_t, t)dt + \sigma_t dW_t, \qquad X_{\tau} \sim q_{\tau}
```

- Define a sequence of intermediate target densities $q_t \propto p_t(x_t) \exp(r_t(x_t))$;
- Do importance-resampling

have $\{x\} \sim q_{\tau'}$, how to obtain exact sample $\{x\} \sim q_{\tau}$

"proposal"
$$dX_t = a(X_t, t)dt + \sigma_t \overleftarrow{dW_t}, \qquad X_{\tau'} \sim q_{\tau'}$$
"target"? $dX_t = b(X_t, t)dt + \sigma_t dW_t, \qquad X_{\tau} \sim q_{\tau}$

- Define a sequence of intermediate target densities $q_t \propto p_t(x_t) \exp(r_t(x_t))$;
- Do importance-resampling

$$w \propto \frac{\text{target}}{\text{proposal}}$$

have $\{x\} \sim q_{\tau'}$, how to obtain exact sample $\{x\} \sim q_{\tau}$

"proposal"
$$dX_t = a(X_t, t)dt + \sigma_t \overleftarrow{dW_t}, \qquad X_{\tau'} \sim q_{\tau'}$$
"target"? $dX_t = b(X_t, t)dt + \sigma_t dW_t, \qquad X_{\tau} \sim q_{\tau}$

- Define a sequence of intermediate target densities $q_t \propto p_t(x_t) \exp(r_t(x_t))$;
- Do importance-resampling

$$w \propto \frac{\text{target}}{q_{\tau'}(X_{\tau'})\prod N_a(X_n|X_{n+1})}$$

have $\{x\} \sim q_{\tau'}$, how to obtain exact sample $\{x\} \sim q_{\tau}$

"proposal"
$$dX_t = a(X_t, t)dt + \sigma_t \overleftarrow{dW_t}, \qquad X_{\tau'} \sim q_{\tau'}$$
"target"? $dX_t = b(X_t, t)dt + \sigma_t dW_t, \qquad X_{\tau} \sim q_{\tau}$

- Define a sequence of intermediate target densities $q_t \propto p_t(x_t) \exp(r_t(x_t))$;
- Do importance-resampling

$$w \propto \frac{q_{\tau}(X_{\tau}) \prod N_b(X_{n+1}|X_n)}{q_{\tau'}(X_{\tau'}) \prod N_a(X_n|X_{n+1})}$$

have $\{x\} \sim q_{\tau'}$, how to obtain exact sample $\{x\} \sim q_{\tau}$

"proposal"
$$dX_t = a(X_t, t)dt + \sigma_t \overleftarrow{dW_t}, \qquad X_{\tau'} \sim q_{\tau'}$$
"target"? $dX_t = b(X_t, t)dt + \sigma_t dW_t, \qquad X_{\tau} \sim q_{\tau}$

- Define a sequence of intermediate target densities $q_t \propto p_t(x_t) \exp(r_t(x_t))$;
- Do importance-resampling

$$w \propto \frac{q_{\tau}(X_{\tau}) \prod N_b(X_{n+1}|X_n)}{q_{\tau'}(X_{\tau'}) \prod N_a(X_n|X_{n+1})}$$

have $\{x\} \sim q_{\tau'}$, how to obtain exact sample $\{x\} \sim q_{\tau}$

Choose a heuristic guidance process;

"proposal"
$$dX_t = a(X_t, t)dt + \sigma_t \overline{dW_t},$$
"target"?
$$dX_t = b(X_t, t)dt + \sigma_t \overline{dW_t}$$

$$R_f^g(X)$$

Do importance-resampling

$$w \propto \frac{q_{\tau}(X_{\tau}) \prod N_b(X_{n+1}|X_n)}{q_{\tau'}(X_{\tau'}) \prod N_a(X_n|X_{n+1})}$$

Proposal"
$$\mathrm{d}X_t = a(X_t,t)\mathrm{d}t + \sigma_t \mathrm{d}W_t,$$
 Starget"? $\mathrm{d}X_t = b(X_t,t)\mathrm{d}t + \sigma_t \mathrm{d}W_t$
• Define a sequence of intermediate target = $\lim \frac{\prod N_g(X_n|X_{n+1})}{\prod N_h(X_{n+1}|X_n)} (x_t) \exp(r_t(x_t));$

have $\{x\} \sim q_{\tau'}$, how to obtain exact sample $\{x\} \sim q_{\tau}$

Choose a heuristic guidance process;

"proposal"
$$dX_t = a(X_t, t)dt + \sigma_t \overleftarrow{dW_t},$$
"target"?
$$dX_t = b(X_t, t)dt + \sigma_t \overrightarrow{dW_t} \left(\frac{1}{R_b^a} (X_{[\tau, \tau']}) \right)$$

Define a sequence of intermediate target

• Do importance-resampling

$$w \propto \frac{q_{\tau}(X_{\tau}) \prod N_b(X_{n+1}|X_n)}{q_{\tau'}(X_{\tau'}) \prod N_a(X_n|X_{n+1})}$$

$$1/R_b^a(X_{[\tau,\tau']})$$

$$(x_t)\exp(r_t(x_t));$$

have $\{x\} \sim q_{\tau'}$, how to obtain exact sample $\{x\} \sim q_{\tau}$

"proposal"
$$dX_t = a(X_t, t)dt + \sigma_t dW_t$$
, $X_{\tau'} \sim q_{\tau'}$ "target"? $dX_t = b(X_t, t)dt + \sigma_t dW_t$, $X_{\tau} \sim q_{\tau}$

- Define a sequence of intermediate target densities $q_t \propto p_t(x_t) \exp(r_t(x_t))$;
- Do importance-resampling

$$w \propto \frac{q_{\tau}(X_{\tau})}{q_{\tau'}(X_{\tau'})} 1/R_b^a(X_{[\tau,\tau']})$$

have $\{x\} \sim q_{\tau'}$, how to obtain exact sample $\{x\} \sim q_{\tau}$

"proposal"
$$dX_t = a(X_t, t)dt + \sigma_t dW_t$$
, $X_{\tau'} \sim q_{\tau'}$
"target"? $dX_t = b(X_t, t)dt + \sigma_t dW_t$, $X_{\tau} \sim q_{\tau}$

- Define a sequence of intermediate target densities $q_t \propto p_t(x_t) \exp(r_t(x_t))$;
- Do importance-resampling

$$w \propto \frac{p_{\tau}(x_{\tau}) \exp(r_{\tau}(x_{\tau}))}{p_{\tau'}(x_{\tau'}) \exp(r_{\tau'}(x_{\tau'}))} \frac{1}{R_b^a(X_{[\tau,\tau']})}$$

have $\{x\} \sim q_{\tau'}$, how to obtain exact sample $\{x\} \sim q_{\tau}$

"proposal"
$$dX_t = a(X_t, t)dt + \sigma_t dW_t$$
, $X_{\tau'} \sim q_{\tau'}$ "target"? $dX_t = b(X_t, t)dt + \sigma_t dW_t$, $X_{\tau} \sim q_{\tau}$

- Define a sequence of intermediate target densities $q_t \propto p_t(x_t) \exp(r_t(x_t))$;
- Do importance-resampling

$$w \propto \frac{p_{\tau}(x_{\tau}) \exp(r_{\tau}(x_{\tau}))}{p_{\tau'}(x_{\tau'}) \exp(r_{\tau'}(x_{\tau'}))} 1/R_b^a(X_{[\tau,\tau']})$$

have $\{x\} \sim q_{\tau'}$, how to obtain exact sample $\{x\} \sim q_{\tau}$. P: $\mathrm{d} X_t = \mathrm{diffusion}$ denoising $\mathrm{d} t + \sigma_t \mathrm{d} W_t$ $X_{\tau'} \sim p_{\tau'}$ $t \in [\tau, \tau']$ Choose a heuristic guidance process;

"target"?
$$dX_t = a(X_t, t)dt + \sigma_t dW_t, \qquad X_{\tau'} \sim q_{\tau'}$$

$$dX_t = b(X_t, t) p_{\tau}(X_{\tau})_t d\underline{W}_t, \qquad X_{\tau} \sim q_{\tau}$$

- Define a sequence of inte p_{t} (X_{t}) arget densities $q_{t} \propto p_{t}(x_{t}) \exp(r_{t}(x_{t}))$;
- Do importance-resampling

$$w \propto \frac{p_{\tau}(x_{\tau}) \exp(r_{\tau}(x_{\tau}))}{p_{\tau'}(x_{\tau'}) \exp(r_{\tau'}(x_{\tau'}))} 1/R_b^a(X_{[\tau,\tau']})$$

have $\{x\} \sim q_{\tau'}$, how to obtain exact sample $\{x\} \sim q_{\tau}$. P: $\mathrm{d}X_t = \mathrm{diffusion}$ denoising $\mathrm{d}t + \sigma_t \mathrm{d}W_t$ $X_{\tau'} \sim p_{\tau'}$ $t \in [\tau, \tau']$ choose a heuristic guidance process:

P: $\mathrm{d}X_t = \mathrm{diffusion}$ noising $\mathrm{d}t + \sigma_t \mathrm{d}W_t$ $X_\tau \sim p_\tau$ $t \in [\tau, \tau']$ "proposal" $\mathrm{d}X_t = a(X_t, t) \mathrm{d}t + \sigma_t \mathrm{d}W_t$, $X_\tau \sim q_{\tau'}$ "target"? $\mathrm{d}X_t = b(X_t, t)p_\tau(X_\tau)_t \mathrm{d}W_t$, $\mathbf{Y}_\tau \sim q_\tau$

- Define a sequence of inte p_{t} (X_{t}) arget densities $q_{t} \propto p_{t}(x_{t}) \exp(r_{t}(x_{t}))$;
- Do importance-resampling

$$w \propto \frac{p_{\tau}(x_{\tau}) \exp(r_{\tau}(x_{\tau}))}{p_{\tau'}(x_{\tau'}) \exp(r_{\tau'}(x_{\tau'}))} 1/R_b^a(X_{[\tau,\tau']})$$

have
$$\{x\} \sim q_{\tau'}$$
, how to obtain exact sample $\{x\} \sim q_{\tau}$
P: $\mathrm{d}X_t = g(X_t,t)\mathrm{d}t + \sigma_t\mathrm{d}W_t$ $X_{\tau'} \sim p_{\tau'}$ $t \in [\tau,\tau']$
Choose a heuristic guidance process;
P: $\mathrm{d}X_t = f(X_t,t)\mathrm{d}t + \sigma_t\mathrm{d}W_t$ $X_\tau \sim p_{\overline{\tau}}$ $t \in [\tau,\tau']$
"proposal" $\mathrm{d}X_t = a(X_t,t)\mathrm{d}t + \sigma_t\mathrm{d}W_t$, $X_{\tau'} \sim q_{\tau'}$
"target" $\mathrm{d}X_t = b(X_t,t)p_{\overline{\tau}}(X_{\overline{\tau}})_t\mathrm{d}\underline{W}_t$, $X_\tau \sim q_\tau$

- Define a sequence of inte p_t e (X_t) target densities $q_t \propto p_t(x_t) \exp(r_t(x_t))$;
- Do importance-resampling

$$w \propto \frac{p_{\tau}(x_{\tau}) \exp(r_{\tau}(x_{\tau}))}{p_{\tau'}(x_{\tau'}) \exp(r_{\tau'}(x_{\tau'}))} 1/R_b^a(X_{[\tau,\tau']})$$

have
$$\{x\} \sim g_{\tau'}$$
, how to obtain exact sample $\{x\} \sim q_{\tau}$
P: $\mathrm{d}X_t = g(X_t, t)\mathrm{d}t + \sigma_t \mathrm{d}W_t$ $X_{\tau'} \sim p_{\tau'}$ $t \in [\tau, \tau']$
Choose a heuristic guidance process;
P: $\mathrm{d}X_t = f(X_t, t)\mathrm{d}t + \sigma_t \mathrm{d}W_t$ $X_{\tau} \sim p_{\overline{t}}$ $t \in [\tau, \tau']$
 $\mathrm{d}X_t = a(X_t, t)\mathrm{d}t + \sigma_t \mathrm{d}W_t$, $t \in [\tau, \tau']$

$$\mathrm{d}X_t = b(\underbrace{xp_{\tau}(X_{\tau})}_{t} + \underbrace{x_{\tau} \sim p_{\overline{t}}}_{t} + \underbrace{x_{\tau'}}_{t}) \sim q_{\tau'}$$
The proposal $\mathrm{d}X_t = b(\underbrace{xp_{\tau}(X_{\tau})}_{t} + \underbrace{x_{\tau'}}_{t}) + \underbrace{x_{\tau'}}_{t} + \underbrace{x_{\tau'}}_{t}) \sim q_{\tau}$
The proposal $\mathrm{d}X_t = b(\underbrace{xp_{\tau}(X_{\tau})}_{t} + \underbrace{x_{\tau'}}_{t}) + \underbrace{x_{\tau'}}_{t} + \underbrace{x_{\tau'}}_{t} + \underbrace{x_{\tau'}}_{t}) \sim q_{\tau}$
The proposal $\mathrm{d}X_t = b(\underbrace{xp_{\tau}(X_{\tau})}_{t} + \underbrace{x_{\tau'}}_{t}) + \underbrace{x_{\tau'}}_{t} + \underbrace{x_{\tau'}}_{t} + \underbrace{x_{\tau'}}_{t}) \sim q_{\tau'}$
The proposal $\mathrm{d}X_t = b(\underbrace{xp_{\tau}(X_{\tau})}_{t} + \underbrace{x_{\tau'}}_{t}) + \underbrace{x_{\tau'}}_{t} + \underbrace{x_{\tau'}}_{t} + \underbrace{x_{\tau'}}_{t}) \sim q_{\tau'}$
The proposal $\mathrm{d}X_t = b(\underbrace{xp_{\tau}(X_{\tau})}_{t} + \underbrace{x_{\tau'}}_{t}) + \underbrace{x_{\tau'}}_{t} + \underbrace{x_{\tau'}}_{t} + \underbrace{x_{\tau'}}_{t}) \sim q_{\tau'}$
The proposal $\mathrm{d}X_t = b(\underbrace{xp_{\tau}(X_{\tau})}_{t} + \underbrace{x_{\tau'}}_{t}) + \underbrace{x_{\tau'}}_{t} + \underbrace{x_{\tau'}}_{t} + \underbrace{x_{\tau'}}_{t}) \sim q_{\tau'}$
The proposal $\mathrm{d}X_t = b(\underbrace{xp_{\tau}(X_{\tau})}_{t} + \underbrace{x_{\tau'}}_{t}) + \underbrace{x_{\tau'}}_{t} + \underbrace{x_{\tau'}}_{t} + \underbrace{x_{\tau'}}_{t}) \sim q_{\tau'}$
The proposal $\mathrm{d}X_t = b(\underbrace{xp_{\tau}(X_{\tau})}_{t} + \underbrace{x_{\tau'}}_{t}) + \underbrace{x_{\tau'}}_{t} + \underbrace{x_{\tau'}}_{t} + \underbrace{x_{\tau'}}_{t}) \sim q_{\tau'}$
The proposal $\mathrm{d}X_t = b(\underbrace{xp_{\tau}(X_{\tau})}_{t} + \underbrace{x_{\tau'}}_{t}) + \underbrace{x_{\tau'}}_{t} + \underbrace{x_{\tau'}}_{t} + \underbrace{x_{\tau'}}_{t}) \sim q_{\tau'}$
The proposal $\mathrm{d}X_t = b(\underbrace{xp_{\tau'}}_{t} + \underbrace{x_{\tau'}}_{t}) + \underbrace{x_{\tau'}}_{t} + \underbrace{x_{\tau'}}_{t} + \underbrace{x_{\tau'}}_{t}) = 1$
The proposal $\mathrm{d}X_t = b(\underbrace{xp_{\tau'}}_{t} + \underbrace{x_{\tau'}}_{t}) + \underbrace{x_{\tau'}}_{t} + \underbrace{x_{\tau'}}_{t} + \underbrace{x_{\tau'}}_{t} + \underbrace{x_{\tau'}}_{t} + \underbrace{x_{\tau'}}_{t}) = 1$
The proposal $\mathrm{d}X_t = b(\underbrace{xp_{\tau'}}_{t} + \underbrace{x_{\tau'}}_{t} + \underbrace{x_{\tau$

Do importance-resampling

$$w \propto \frac{p_{\tau}(x_{\tau}) \exp(r_{\tau}(x_{\tau}))}{p_{\tau'}(x_{\tau'}) \exp(r_{\tau'}(x_{\tau'}))} 1/R_b^a(X_{[\tau,\tau']})$$

$$\begin{array}{l} \underset{\mathbf{P}:\ dX_t}{\text{have}} \{x\} \sim g_{\tau'}, \underset{\mathbf{how}}{\text{how}} \text{ to obtain exact sample} \ \{x\} \sim q_{\tau} \\ \overset{\mathbf{P}:\ dX_t}{\text{P}:\ dX_t} = g(X_t,t) dt + \sigma_t dW_t \quad X_{\tau'} \sim p_{\tau'} \quad t \in [\tau,\tau'] \\ \overset{\mathbf{P}:\ dX_t}{\text{P}:\ dX_t} = f(X_t,t) dt + \sigma_t dW_t \quad X_{\tau} \sim p_{\overline{t}} \quad t \in [\tau,\tau'] \\ \overset{\mathbf{P}:\ dX_t}{\text{Opposal}} = a(X_t,t) dt + \sigma_t dW_t, \quad X_{\tau'} \sim q_{\tau'} \end{array} \qquad \begin{array}{l} \overset{\mathbf{P}:\ d}{\mathbf{P}} (X_{[\tau,\tau']}) = 1 \\ \overset{\mathbf{P}:\ dX_t}{\text{P}:\ dX_t} = b(\underbrace{xp_{\tau}(X_{\tau})}_{t} + \underbrace{x_{\tau} \sim p_{\overline{t}}}_{t} (X_{[\tau,\tau']})^{\sim} q_{\tau} \\ \overset{\mathbf{P}:\ dX_t}{\text{P}:\ dX_t} = b(\underbrace{xp_{\tau}(X_{\tau})}_{t} + \underbrace{x_{\tau} \sim p_{\tau}}_{t} (X_{[\tau,\tau']})^{\sim} q_{\tau} \\ \overset{\mathbf{P}:\ d}{\mathbf{P}:\ d} = b(\underbrace{x_{\tau} \sim q_{\tau}}_{t} (X_{\tau}) + \underbrace{x_{\tau} \sim q_{\tau}}_{t} (X_{\tau} \sim q_{\tau})^{\sim} q_{\tau} \\ \overset{\mathbf{P}:\ d}{\mathbf{P}:\ d} = b(\underbrace{x_{\tau} \sim q_{\tau}}_{t} (X_{\tau} \sim q_{\tau})^{\sim} q_{\tau} \\ \overset{\mathbf{P}:\ d}{\mathbf{P}:\ d} = b(\underbrace{x_{\tau} \sim q_{\tau}}_{t} (X_{\tau} \sim q_{\tau})^{\sim} q_{\tau} \\ \overset{\mathbf{P}:\ d}{\mathbf{P}:\ d} = b(\underbrace{x_{\tau} \sim q_{\tau}}_{t} (X_{\tau} \sim q_{\tau})^{\sim} q_{\tau} \\ \overset{\mathbf{P}:\ d}{\mathbf{P}:\ d} = b(\underbrace{x_{\tau} \sim q_{\tau}}_{t} (X_{\tau} \sim q_{\tau})^{\sim} q_{\tau} \\ \overset{\mathbf{P}:\ d}{\mathbf{P}:\ d} = b(\underbrace{x_{\tau} \sim q_{\tau}}_{t} (X_{\tau} \sim q_{\tau})^{\sim} q_{\tau} \\ \overset{\mathbf{P}:\ d}{\mathbf{P}:\ d} = b(\underbrace{x_{\tau} \sim q_{\tau}}_{t} (X_{\tau} \sim q_{\tau})^{\sim} q_{\tau} \\ \overset{\mathbf{P}:\ d}{\mathbf{P}:\ d} = b(\underbrace{x_{\tau} \sim q_{\tau}}_{t} (X_{\tau} \sim q_{\tau})^{\sim} q_{\tau} \\ \overset{\mathbf{P}:\ d}{\mathbf{P}:\ d} = b(\underbrace{x_{\tau} \sim q_{\tau}}_{t} (X_{\tau} \sim q_{\tau})^{\sim} q_{\tau} \\ \overset{\mathbf{P}:\ d}{\mathbf{P}:\ d} = b(\underbrace{x_{\tau} \sim q_{\tau}}_{t} (X_{\tau} \sim q_{\tau})^{\sim} q_{\tau} \\ \overset{\mathbf{P}:\ d}{\mathbf{P}:\ d} = b(\underbrace{x_{\tau} \sim q_{\tau}}_{t} (X_{\tau} \sim q_{\tau})^{\sim} q_{\tau} \\ \overset{\mathbf{P}:\ d}{\mathbf{P}:\ d} = b(\underbrace{x_{\tau} \sim q_{\tau}}_{t} (X_{\tau} \sim q_{\tau})^{\sim} q_{\tau} \\ \overset{\mathbf{P}:\ d}{\mathbf{P}:\ d} = b(\underbrace{x_{\tau} \sim q_{\tau}}_{t} (X_{\tau} \sim q_{\tau})^{\sim} q_{\tau} \\ \overset{\mathbf{P}:\ d}{\mathbf{P}:\ d} = b(\underbrace{x_{\tau} \sim q_{\tau}}_{t} (X_{\tau} \sim q_{\tau})^{\sim} q_{\tau} \\ \overset{\mathbf{P}:\ d}{\mathbf{P}:\ d} = b(\underbrace{x_{\tau} \sim q_{\tau}}_{t} (X_{\tau} \sim q_{\tau})^{\sim} q_{\tau} \\ \overset{\mathbf{P}:\ d}{\mathbf{P}:\ d} = b(\underbrace{x_{\tau} \sim q_{\tau}}_{t} (X_{\tau} \sim q_{\tau})^{\sim} q_{\tau} \\ \overset{\mathbf{P}:\ d}{\mathbf{P}:\ d} = b(\underbrace{x_{\tau} \sim q_{\tau}}_{t} (X_{\tau} \sim q_{\tau})^{\sim} q_{\tau} \\ \overset{\mathbf{P}:\ d}{\mathbf{P}:\ d} = b(\underbrace{x_{\tau} \sim q_{\tau}}_{t} (X_{\tau} \sim q_{\tau})^{\sim} q_{\tau} \\ \overset{\mathbf{P}:\ d}{\mathbf{P}:\ d} = b(\underbrace{x_{\tau} \sim q_{\tau}}_{t} (X_{\tau} \sim q_{\tau})^{$$

Do importance-resampling

$$w \propto R_f^g(X_{[\tau,\tau']}) \frac{\exp(r_{\tau}(x_{\tau}))}{\exp(r_{\tau'}(x_{\tau'}))} 1/R_b^a(X_{[\tau,\tau']})$$

"proposal"
$$dX_t = a(X_t, t)dt + \sigma_t dW_t$$
, $X_{\tau'} \sim q_{\tau'}$
"target" $dX_t = b(X_t, t)dt + \sigma_t dW_t$, $X_{\tau} \sim q_{\tau}$

- Define a sequence of intermediate target densities $q_t \propto p_t(x_t) \exp(r_t(x_t))$;
- Do importance-resampling

$$w \propto R_f^g(X_{[\tau,\tau']}) \frac{\exp(r_{\tau}(x_{\tau}))}{\exp(r_{\tau'}(x_{\tau'}))} 1/R_b^a(X_{[\tau,\tau']})$$

$$w \propto R_f^g(X_{[\tau,\tau']}) \frac{\exp(r_{\tau}(x_{\tau}))}{\exp(r_{\tau'}(x_{\tau'}))} 1/R_b^a(X_{[\tau,\tau']})$$

- **b** Define proposal and target process
- rightharpoonup Define intermediate densities q_t (by steering diffusion's p_t)
- $rac{d}{dt}$ Replace ratio between p_t by forward-backward kernel ratio R

$$w \propto R_f^g(X_{[\tau,\tau']}) \frac{\exp(r_{\tau}(x_{\tau}))}{\exp(r_{\tau'}(x_{\tau'}))} 1/R_b^a(X_{[\tau,\tau']})$$

- **b** Define proposal and target process
- rightharpoonup Define intermediate densities q_t (by steering diffusion's p_t)
- rightarrow Replace ratio between p_t by forward-backward kernel ratio R

$$w \propto R_f^g(X_{[\tau,\tau']}) \frac{\exp(r_{\tau}(x_{\tau}))}{\exp(r_{\tau'}(x_{\tau'}))} 1/R_b^a(X_{[\tau,\tau']})$$

- **b** Define proposal and target process
- $\stackrel{\longleftarrow}{}$ Define intermediate densities q_t (by steering diffusion's p_t)
- rightharpoonup Replace ratio between p_t by forward-backward kernel ratio R

$$w \propto R_f^g(X_{[\tau,\tau']}) \frac{\exp(r_{\tau}(x_{\tau}))}{\exp(r_{\tau'}(x_{\tau'}))} 1/R_b^a(X_{[\tau,\tau']})$$

- **b** Define proposal and target process
- igspace Define intermediate densities q_t (by steering diffusion's p_t)
- $\stackrel{\longleftarrow}{=}$ Replace ratio between p_t by forward-backward kernel ratio R

$$w \propto R_f^g(X_{[\tau,\tau']}) \frac{\exp(r_{\tau}(x_{\tau}))}{\exp(r_{\tau'}(x_{\tau'}))} 1/R_b^a(X_{[\tau,\tau']})$$

 \clubsuit Anneal target p_t^{β}

" Composition/CFG between 2 diffusions $\left(p_t^{(1)}\right)^{\beta}\left(p_t^{(2)}\right)^{\alpha}$

$$w \propto R_f^g(X_{[\tau,\tau']}) \frac{\exp(r_{\tau}(x_{\tau}))}{\exp(r_{\tau'}(x_{\tau'}))} 1/R_b^a(X_{[\tau,\tau']})$$

 \clubsuit Anneal target p_t^{β}

$$w \propto \left[R_f^g \left(X_{[\tau,\tau']} \right) \right]^{\beta} 1 / R_b^a (X_{[\tau,\tau']})$$

" Composition/CFG between 2 diffusions $\left(p_t^{(1)}\right)^{\beta}\left(p_t^{(2)}\right)^{\alpha}$

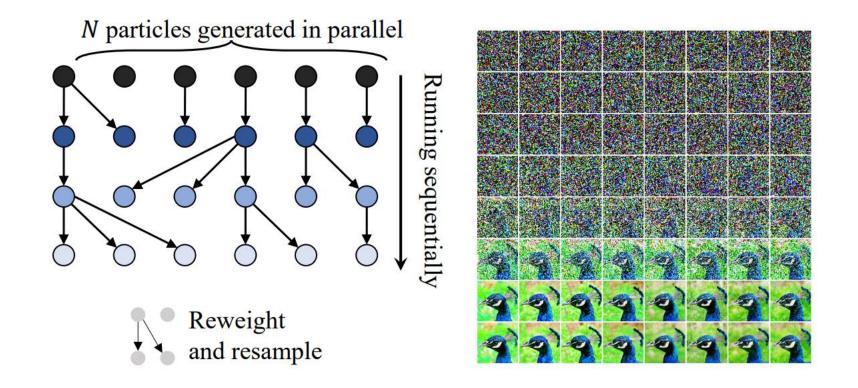
$$w \propto \left[R_{f_1}^{g_1} \left(X_{[\tau, \tau']} \right) \right]^{\beta} \left[R_{f_2}^{g_2} \left(X_{[\tau, \tau']} \right) \right]^{\alpha} 1 / R_b^{\alpha} (X_{[\tau, \tau']})$$

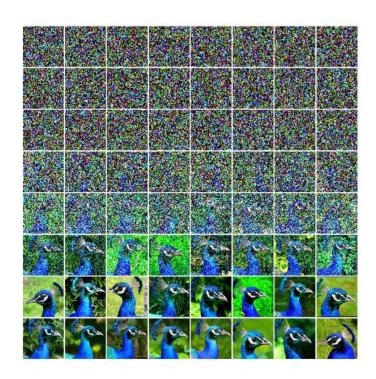
Episode 2

Control Generation with Sequential Monte Carlo in Path Space

Sequence of Importance Resampling (SMC) along the denoising path

Flexible Control of diffusion generation process





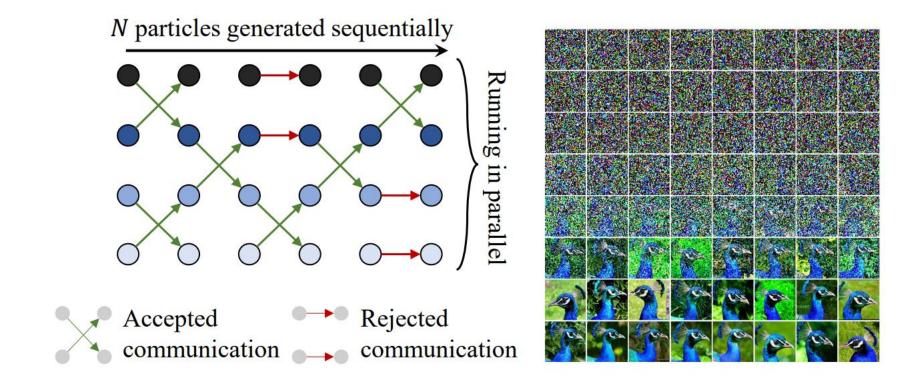


Figure taken from: He, Jiajun, et al. "CREPE: Controlling Diffusion with Replica Exchange." arXiv.

Replica Exchange: Intuition

Sequential Monte Carlo:

Generate N samples at each step, select the "best" set, go to next step

Replica Exchange (parallel Tempering):

Generate initial guess at all steps, attempt to exchange guesses at adjacent steps, accept exchange if the change makes the guess "better", otherwise reject

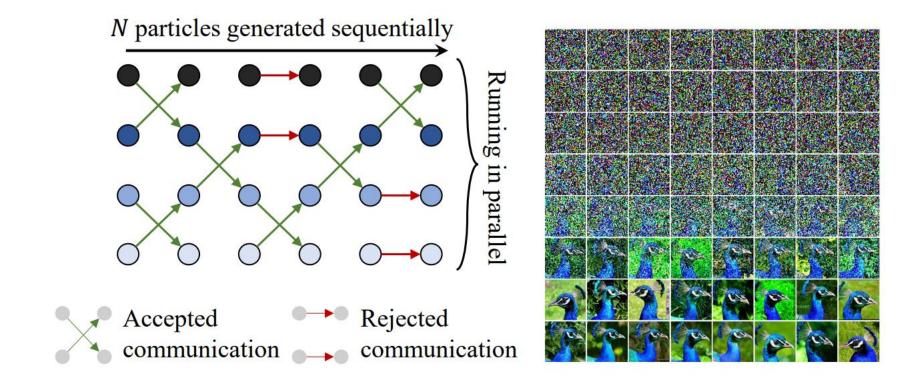


Figure taken from: He, Jiajun, et al. "CREPE: Controlling Diffusion with Replica Exchange." arXiv.

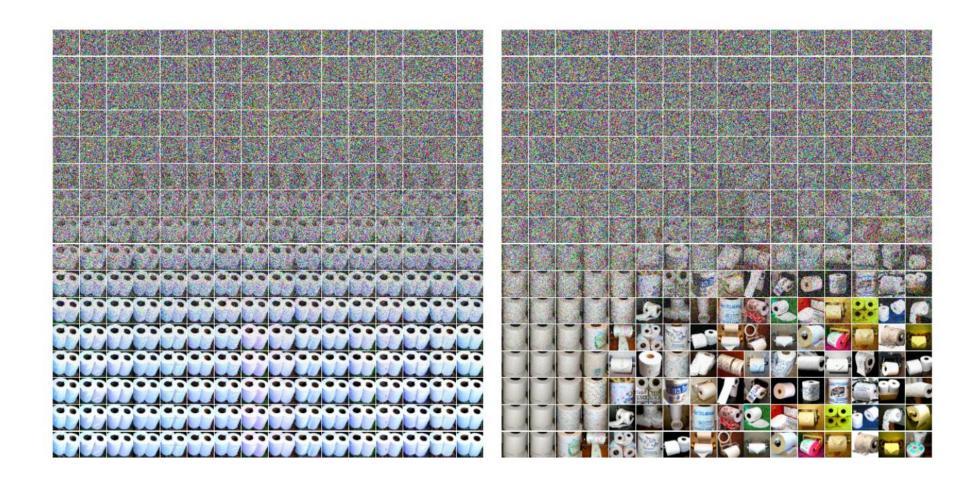
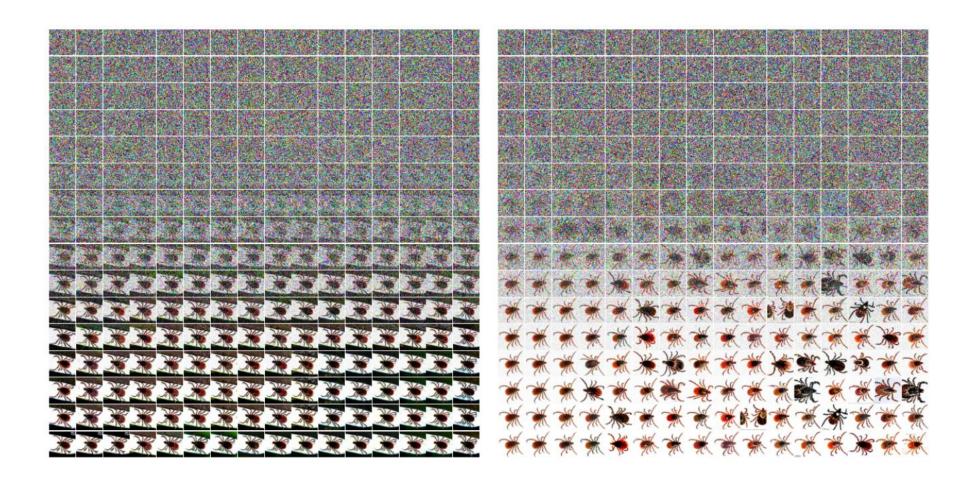


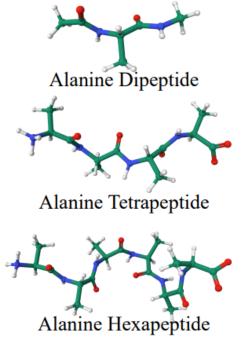
Figure taken from: He, Jiajun, et al. "CREPE: Controlling Diffusion with Replica Exchange." arXiv.



Control Diffusion with Replica Exchange

 \leftarrow Tempering: $p_0' \propto p_0^{\alpha}$

Table 1: Inference-time tempering performance for Alanine Dipeptide, Tetrapeptide and Hexapeptide.



		FKC		RNE	CREPE
		Anneal Score	Anneal Noise	KIL	(Ours)
ALA Dipeptide $(800K \rightarrow 300K)$	Energy TVD	0.345 ± 0.010	0.894 ± 0.002	0.391 ± 0.006	0.224 ± 0.005
	Distance TVD	0.023 ± 0.001	0.036 ± 0.001	0.024 ± 0.001	0.019 ± 0.000
	Sample W2	0.293 ± 0.001	0.282 ± 0.001	0.282 ± 0.001	0.264 ± 0.001
	TICA MMD	$\textbf{0.116}\pm 0.003$	$\textbf{0.108}\pm 0.004$	$0.168\pm \textbf{0.007}$	0.096 ± 0.014
ALA Tetrapeptide $(800K \rightarrow 500K)$	Energy TVD	0.122 ± 0.012	0.436 ± 0.007	0.154 ± 0.006	0.122 ± 0.004
	Distance TVD	0.014 ± 0.000	0.015 ± 0.000	0.013 ± 0.001	0.013 ± 0.001
	Sample W2	0.923 ± 0.008	0.892 ± 0.001	0.893 ± 0.005	0.856 ± 0.004
	TICA MMD	$0.183\pm{\scriptstyle 0.020}$	$0.138\pm{\scriptstyle 0.017}$	0.155 ± 0.009	0.035 ± 0.002
ALA Hexapeptide (800K → 600K)	Energy TVD	0.091 ± 0.006	0.206 ± 0.005	0.087 ± 0.003	0.398 ± 0.001
	Distance TVD	$\textbf{0.018}\pm 0.000$	0.020 ± 0.001	0.010 ± 0.001	0.009 ± 0.001
	Sample W2	1.585 ± 0.001	1.652 ± 0.012	1.618 ± 0.001	1.299 ± 0.004
	TICA MMD	$\textbf{0.088}\pm 0.004$	$0.068\pm{\scriptstyle 0.010}$	$0.042\pm{\scriptstyle 0.004}$	0.009 ± 0.001

Control Diffusion with Replica Exchange

 $rac{d}{dr}$ reward-tilting: $p_0' \propto p_0 \exp(r_0)$

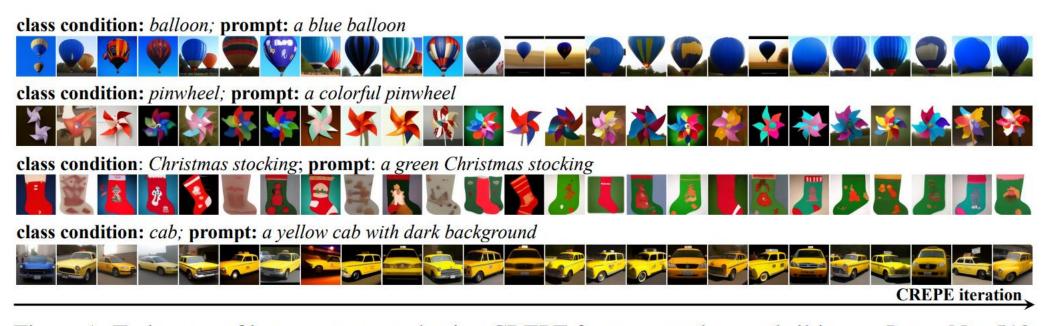
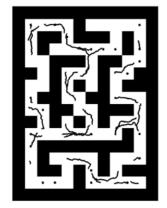


Figure 1: Trajectory of images generated using CREPE for prompted reward-tilting on ImageNet-512, thinned every 8 iterations. After burn-in, the samples align closely with the prompt.

Control Diffusion with Replica Exchange

Composition + reward-tilting: $p_0' \propto \prod p_0^{(i)} \exp(r_0)$



Example of training trajectories.

Trajectory after 1 PT iteration.

Trajectory after 10k PT iterations.

Trajectory after 50k PT iterations.

Trajectory after 100k PT iterations.



Trajectory after 101k Trajectory after 150k PT iteration.

PT iterations.

Summary

Diffusion Model

Path Measure

 Importance Sampling and SMC / Replica Exchange with Path Measures

Control your Diffusion Model

What's next?