

Fantastic Path RND and where to find them

• Fantastic Path RND: FF-RND, FB-RND

- Where to find them?
 - Importance Sampling:
 - Free-energy estimation, density estimation, SMC
 - Parallel Tempering
 - Variational Inference

Fantastic Path RND and where to find them

• Fantastic Path RND: FF-RND, FB-RND

- Where to find them?
 - Importance Sampling:
 - Free-energy estimation, density estimation, SMC
 - Parallel Tempering
 - Variational Inference

Unnormalised density 1: \tilde{p}

Unnormalised density 2: \tilde{q}

Density ratio: $w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$

Unnormalised density 1: \tilde{p} Unnormalised density 2: \tilde{q}

Density ratio: $w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$

• Importance sampling / resampling:

e.g., free-energy estimation:

Unnormalised density 1: \tilde{p} Unnormalised density 2: \tilde{q}

Density ratio: $w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$

$$\Delta F = -\log \frac{Z_p}{Z_q} = -\log \frac{\int \tilde{p}(x) dx}{Z_q}$$

$$= -\log \left(\frac{1}{Z_q} \int \tilde{q}(x) \frac{\tilde{p}(x)}{\tilde{q}(x)} dx\right)$$

$$= -\log \left(\int \frac{\tilde{q}(x)}{Z_q} \frac{\tilde{p}(x)}{\tilde{q}(x)} dx\right)$$

$$= -\log \left(\int q(x) \frac{\tilde{p}(x)}{\tilde{q}(x)} dx\right)$$

Unnormalised density 1: \tilde{p} Unnormalised density 2: \tilde{q}

Density ratio: $w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$

$$\Delta F = -\log \frac{Z_p}{Z_q} = -\log \frac{\int \tilde{p}(x) dx}{Z_q}$$

$$= -\log \left(\frac{1}{Z_q} \int \tilde{q}(x) \frac{\tilde{p}(x)}{\tilde{q}(x)} dx\right)$$

$$= -\log \left(\int \frac{\tilde{q}(x)}{Z_q} \frac{\tilde{p}(x)}{\tilde{q}(x)} dx\right)$$

$$= -\log \left(\int q(x) \frac{\tilde{p}(x)}{\tilde{q}(x)} dx\right)$$

Unnormalised density 1: \tilde{p} Unnormalised density 2: \tilde{q}

Density ratio: $w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$

$$\Delta F = -\log \frac{Z_p}{Z_q} = -\log \frac{\int \tilde{p}(x) dx}{Z_q}$$

$$= -\log (\frac{1}{Z_q} \int \tilde{q}(x) \frac{\tilde{p}(x)}{\tilde{q}(x)} dx)$$

$$= -\log (\int \frac{\tilde{q}(x)}{Z_q} \frac{\tilde{p}(x)}{\tilde{q}(x)} dx)$$

$$= -\log (\int q(x) \frac{\tilde{p}(x)}{\tilde{q}(x)} dx)$$

Unnormalised density 1: \tilde{p} Unnormalised density 2: \tilde{q}

Density ratio: $w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$

$$\Delta F = -\log \frac{Z_p}{Z_q} = -\log \frac{\int \tilde{p}(x) dx}{Z_q}$$

$$= -\log (\frac{1}{Z_q} \int \tilde{q}(x) \frac{\tilde{p}(x)}{\tilde{q}(x)} dx)$$

$$= -\log (\int \frac{\tilde{q}(x)}{Z_q} \frac{\tilde{p}(x)}{\tilde{q}(x)} dx)$$

$$= -\log (\int q(x) \frac{\tilde{p}(x)}{\tilde{q}(x)} dx)$$

Unnormalised density 1: \tilde{p} Unnormalised density 2: \tilde{q}

Density ratio: $w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$

$$\Delta F = -\log \frac{Z_p}{Z_q} = -\log \frac{\int \tilde{p}(x) dx}{Z_q}$$

$$= -\log (\frac{1}{Z_q} \int \tilde{q}(x) \frac{\tilde{p}(x)}{\tilde{q}(x)} dx)$$

$$= -\log (\int \frac{\tilde{q}(x)}{Z_q} \frac{\tilde{p}(x)}{\tilde{q}(x)} dx)$$

$$= -\log (\int q(x) w(x) dx)$$

Unnormalised density 1: \tilde{p} Unnormalised density 2: \tilde{q}

Density ratio: $w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$

Free-energy Perturbation

$$\Delta F = -\log \frac{Z_p}{Z_q} = -\log \frac{\int \tilde{p}(x) dx}{Z_q}$$

$$= -\log \left(\frac{1}{Z_q} \int \tilde{q}(x) \frac{\tilde{p}(x)}{\tilde{q}(x)} dx\right)$$

$$= -\log \left(\int \frac{\tilde{q}(x)}{Z_q} \frac{\tilde{p}(x)}{\tilde{q}(x)} dx\right)$$

$$= -\log \left(\int q(x) w(x) dx\right)$$

Unnormalised density 1: \tilde{p} Unnormalised density 2: \tilde{q}

Density ratio: $w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$

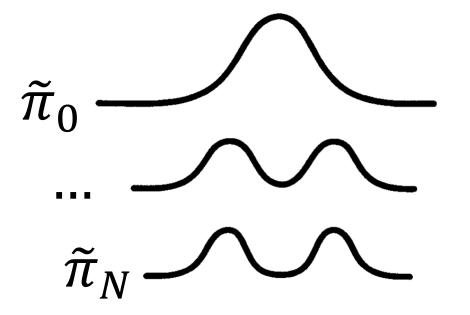
- An MCMC algorithm for target density $\widetilde{\pi}_N$
- Workflow:
 - Choose an easy-to-sample reference $\tilde{\pi}_0$
 - Design multiple intermediate targets $\tilde{\pi}_n$
 - Design two MCMC kernels with invariant measure as $\tilde{\pi}_0 \times \tilde{\pi}_1 \times \cdots \times \tilde{\pi}_N$

- An MCMC algorithm for target density $\widetilde{\pi}_N$
- Workflow:
 - Choose an easy-to-sample reference $\tilde{\pi}_0$
 - Design multiple intermediate targets $ilde{\pi}_n$
 - Design two MCMC kernels with invariant measure as $\tilde{\pi}_0 \times \tilde{\pi}_1 \times \cdots \times \tilde{\pi}_N$

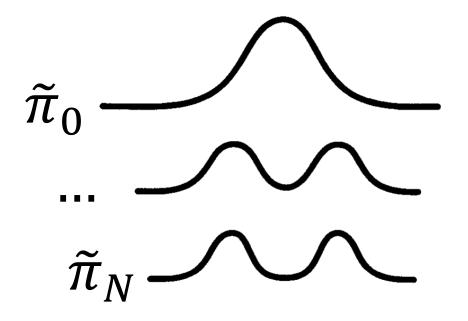
- An MCMC algorithm for target density $\widetilde{\pi}_N$
- Workflow:
 - Choose an easy-to-sample reference $\tilde{\pi}_0$
 - Design multiple intermediate targets $\tilde{\pi}_n$
 - Design two MCMC kernels with invariant measure as $\tilde{\pi}_0 \times \tilde{\pi}_1 \times \cdots \times \tilde{\pi}_N$

- An MCMC algorithm for target density $\widetilde{\pi}_N$
- Workflow:
 - Choose an easy-to-sample reference $\tilde{\pi}_0$
 - Design multiple intermediate targets $\tilde{\pi}_n$
 - Design two MCMC kernels with invariant measure as $\tilde{\pi}_0 \times \tilde{\pi}_1 \times \cdots \times \tilde{\pi}_N$

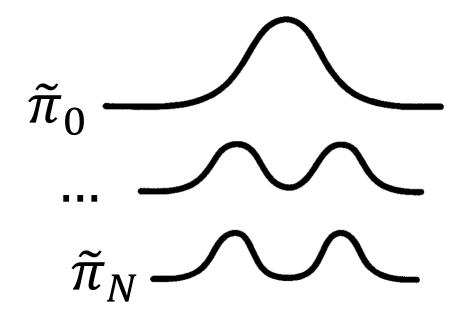
- An MCMC algorithm for target density $\tilde{\pi}_N$
- Workflow:
 - Choose an easy-to-sample reference $ilde{\pi}_0$
 - Design multiple intermediate targets $ilde{\pi}_n$
 - Design two MCMC kernels with invariant measure as $\tilde{\pi}_0 \times \tilde{\pi}_1 \times \cdots \times \tilde{\pi}_N$

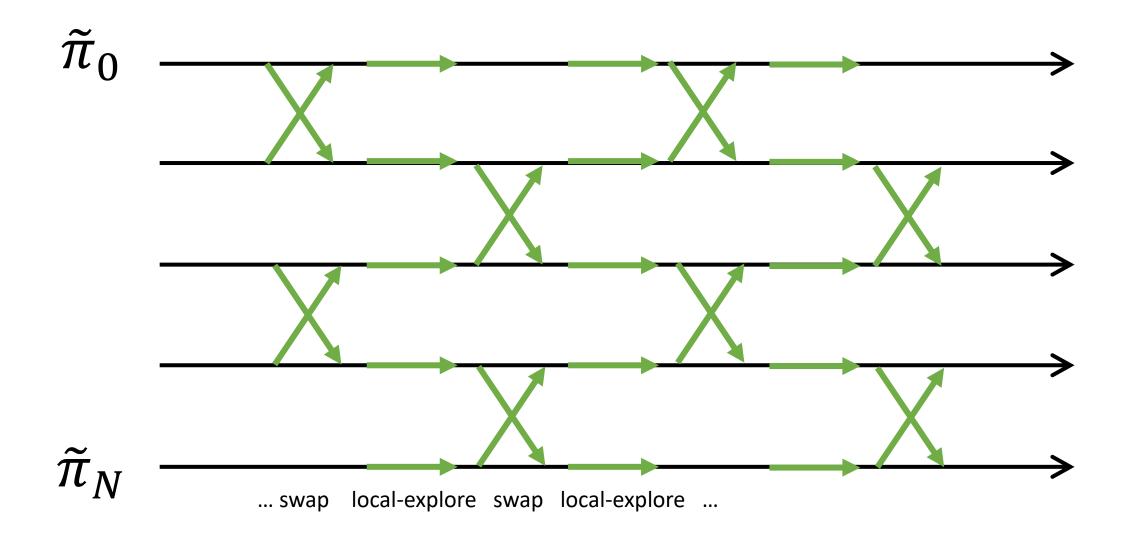


- An MCMC algorithm for target density $\tilde{\pi}_N$
- Workflow:
 - Choose an easy-to-sample reference $\tilde{\pi}_0$
 - Design multiple intermediate targets $ilde{\pi}_n$
 - Design two MCMC kernels with invariant measure as $\tilde{\pi}_0 \times \tilde{\pi}_1 \times \cdots \times \tilde{\pi}_N$
 - 1. Local exploration kernel: independent MCMC for each $\tilde{\pi}_n$



- An MCMC algorithm for target density $\tilde{\pi}_N$
- Workflow:
 - Choose an easy-to-sample reference $\tilde{\pi}_0$
 - Design multiple intermediate targets $ilde{\pi}_n$
 - Design two MCMC kernels with invariant measure as $\tilde{\pi}_0 \times \tilde{\pi}_1 \times \cdots \times \tilde{\pi}_N$
 - 1. Local exploration kernel: independent MCMC for each $ilde{\pi}_n$
 - 2. Communication kernel: swap between all adjacent pairs $(\tilde{\pi}_n, \tilde{\pi}_{n+1})$





Unnormalised density 1: \tilde{p} Unnormalised density 2: \tilde{q}

Density ratio: $w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$

Unnormalised density 1: \tilde{p} Unnormalised density 2: \tilde{q}

Density ratio: $w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$

Communication in PT:

Assume replica m has density \tilde{p} , replica m+1 has density \tilde{q} , how to construct a MCMC "swap" kernel with invariant density $\tilde{p}(x) \times \tilde{q}(y)$?

Unnormalised density 1: \tilde{p} Unnormalised density 2: \tilde{q}

Density ratio:
$$w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$$

Assume replica m has density \tilde{p} , replica m+1 has density \tilde{q} , how to construct a MCMC "swap" kernel with invariant density $\tilde{p}(x) \times \tilde{q}(y)$?

- ho next state $(x', y') \sim \tilde{p}(x)\tilde{q}(y)$

Unnormalised density 1: \tilde{p} Unnormalised density 2: \tilde{q}

Density ratio:
$$w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$$

Assume replica m has density \tilde{p} , replica m+1 has density \tilde{q} , how to construct a MCMC "swap" kernel with invariant density $\tilde{p}(x) \times \tilde{q}(y)$?

Communication in PT:

- $\{ \}$ current state $(x,y) \sim \tilde{p}(x)\tilde{q}(y)$
- next state $(x', y') \sim \tilde{p}(x)\tilde{q}(y)$

informally

$$\alpha = \min\{1, \frac{\tilde{p}(x')\tilde{q}(y')\delta_{x,y}(x',y')}{\tilde{p}(x)\tilde{q}(y)\delta_{x',y'}(x,y)}\}$$

Unnormalised density 1: \tilde{p} Unnormalised density 2: \tilde{q}

Density ratio:
$$w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$$

Assume replica m has density \tilde{p} , replica m+1 has density \tilde{q} , how to construct a MCMC "swap" kernel with invariant density $\tilde{p}(x) \times \tilde{q}(y)$?

Communication in PT:

- next state $(x', y') \sim \tilde{p}(x)\tilde{q}(y)$

informally

$$\alpha = \min\{1, \frac{\tilde{p}(x')\tilde{q}(y')\delta_{x,y}(x',y')}{\tilde{p}(x)\tilde{q}(y)\delta_{x',y'}(x,y)}\}$$

Requirement: proposal is involution f(f(x)) = x

Unnormalised density 1: \tilde{p} Unnormalised density 2: \tilde{q}

Density ratio:
$$w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$$

Assume replica m has density \tilde{p} , replica m+1 has density \tilde{q} , how to construct a MCMC "swap" kernel with invariant density $\tilde{p}(x) \times \tilde{q}(y)$?

- $\{ \}$ next state $(x', y') \sim \tilde{p}(x)\tilde{q}(y)$

$$\alpha = \min\{1, \frac{\tilde{p}(x')\tilde{q}(y')}{\tilde{p}(x)\tilde{q}(y)}\}\$$

Unnormalised density 1: \tilde{p} Unnormalised density 2: \tilde{q}

Density ratio:
$$w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$$

Assume replica m has density \tilde{p} , replica m+1 has density \tilde{q} , how to construct a MCMC "swap" kernel with invariant density $\tilde{p}(x) \times \tilde{q}(y)$?

- ho next state $(x', y') \sim \tilde{p}(x)\tilde{q}(y)$

$$\alpha = \min\{1, \frac{\tilde{p}(x')\tilde{q}(y')}{\tilde{p}(x)\tilde{q}(y)}\}\$$
$$= \min\{1, \frac{\tilde{p}(y)\tilde{q}(x)}{\tilde{p}(x)\tilde{q}(y)}\}\$$

Unnormalised density 1: \tilde{p} Unnormalised density 2: \tilde{q}

Density ratio:
$$w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$$

Assume replica m has density \tilde{p} , replica m+1 has density \tilde{q} , how to construct a MCMC "swap" kernel with invariant density $\tilde{p}(x) \times \tilde{q}(y)$?

$$\{ \}$$
 next state $(x', y') \sim \tilde{p}(x)\tilde{q}(y)$

$$\alpha = \min\{1, \frac{\tilde{p}(x')\tilde{q}(y')}{\tilde{p}(x)\tilde{q}(y)}\}\$$

$$= \min\{1, \frac{\tilde{p}(y)\tilde{q}(x)}{\tilde{p}(x)\tilde{q}(y)}\}\$$

Unnormalised density 1: \tilde{p} Unnormalised density 2: \tilde{q}

Density ratio:
$$w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$$

Assume replica m has density \tilde{p} , replica m+1 has density \tilde{q} , how to construct a MCMC "swap" kernel with invariant density $\tilde{p}(x) \times \tilde{q}(y)$?

$$\P$$
 next state $(x', y') \sim \tilde{p}(x)\tilde{q}(y)$

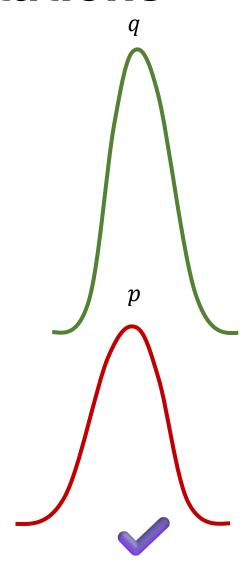
$$\alpha = \min\{1, \frac{\tilde{p}(x')\tilde{q}(y')}{\tilde{p}(x)\tilde{q}(y)}\}\$$
$$= \min\{1, \frac{w(y)}{w(x)}\}\$$

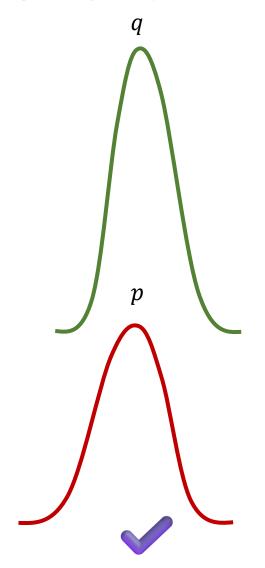
Wrap up

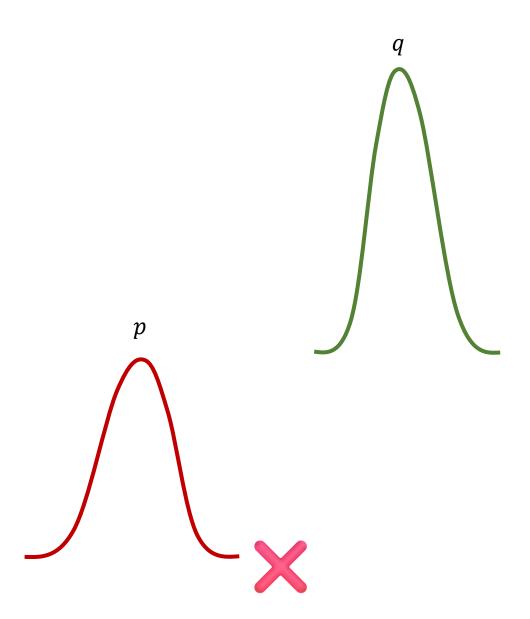
Unnormalised density 1: \tilde{p} Unnormalised density 2: \tilde{q}

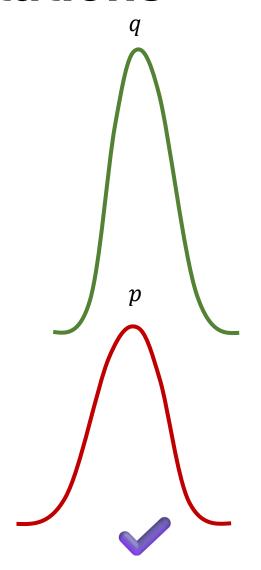
Density ratio: $w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$

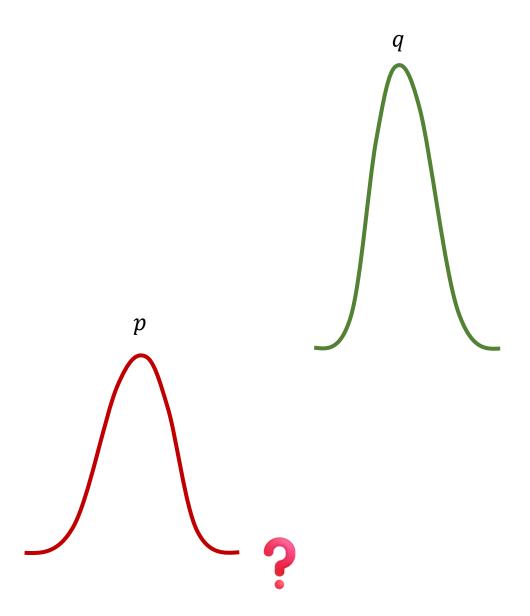
- Importance sampling: $w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$
- FEP: $\Delta F = -\log(\int q(x)w(x) dx)$
- PT Swap: $\alpha = \min\{1, \frac{w(y)}{w(x)}\}$

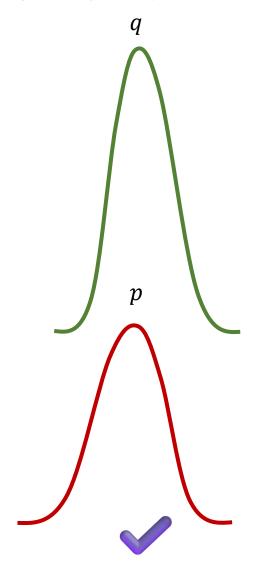


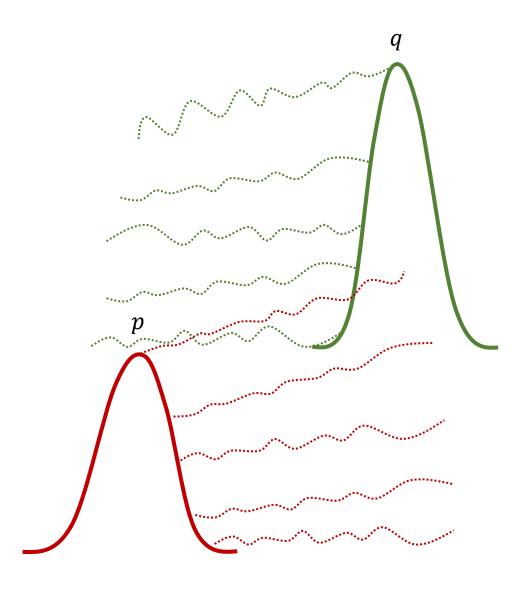


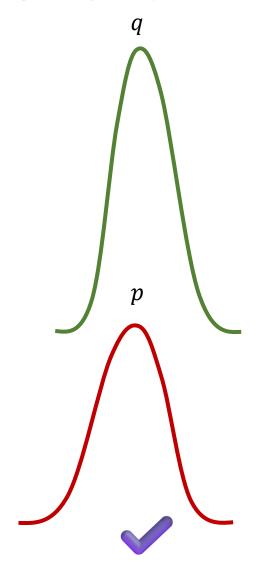


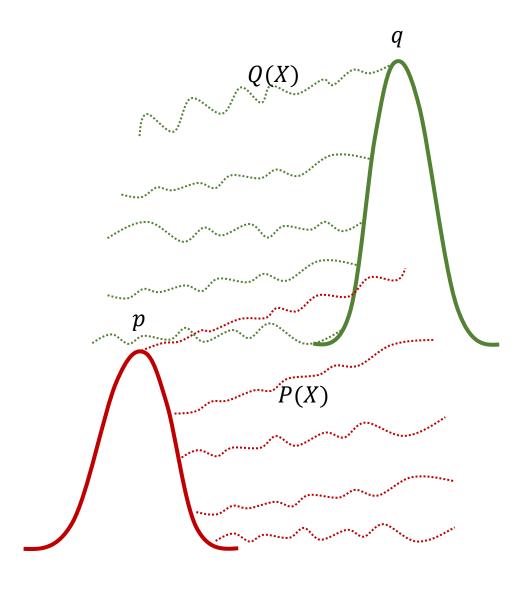












From Density Ratio to Path RND

Unnormalised density 1: \tilde{p}

Unnormalised density 2: \tilde{q}

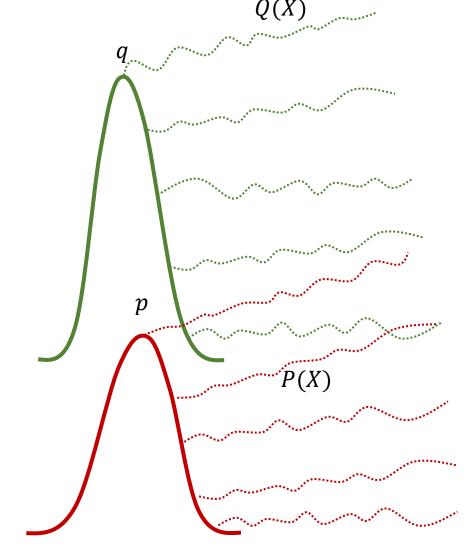
Density ratio: $w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$

Path measure 1: P

Path measure 2: Q

"Density" ratio: $\frac{dP}{dQ}(x)$

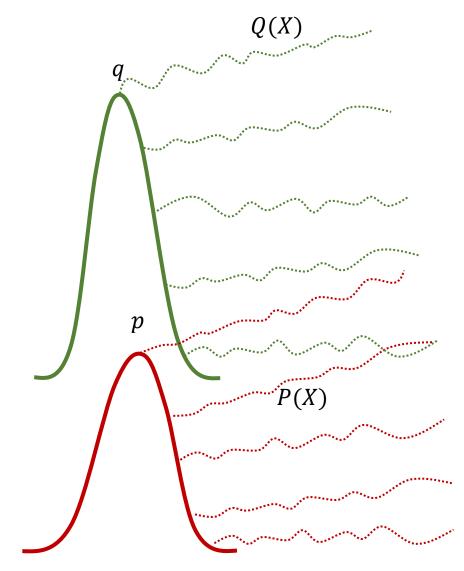
 $P: dX_t = f(X_t, t)dt + \sigma_t dW_t, X_0 \sim p_0 = p$ $Q: dX_t = g(X_t, t)dt + \sigma_t dW_t, X_0 \sim q_0 = q$



$$P: dX_t = f(X_t, t)dt + \sigma_t dW_t, X_0 \sim p_0 = p$$

$$Q: dX_t = g(X_t, t)dt + \sigma_t dW_t, X_0 \sim q_0 = q$$

$$\frac{\mathrm{d}P}{\mathrm{d}Q}(X) = \lim \underbrace{\frac{p(X_0)\prod N_1(X_{n+1}|X_n)}{q(X_0)\prod N_2(X_{n+1}|X_n)}}_{\text{Initial density ratio}}$$
Transition kernel ratio

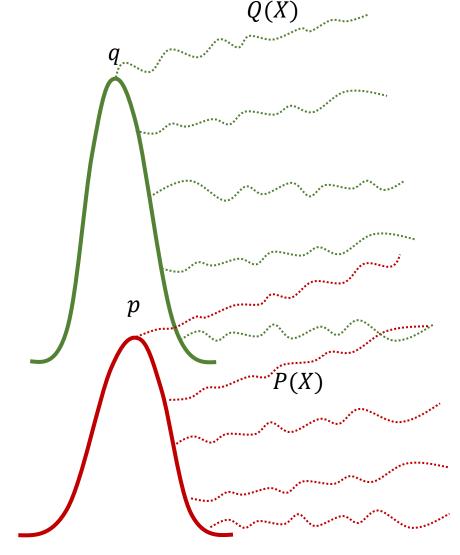


$$P: dX_t = f(X_t, t)dt + \sigma_t dW_t, X_0 \sim p_0 = p$$

$$Q: dX_t = g(X_t, t)dt + \sigma_t dW_t, X_0 \sim q_0 = q$$

$$\frac{\mathrm{d}P}{\mathrm{d}Q}(X) = \lim \frac{p(X_0) \prod N_1(X_{n+1}|X_n)}{q(X_0) \prod N_2(X_{n+1}|X_n)}$$
Initial density ratio

Transition kernel ratio



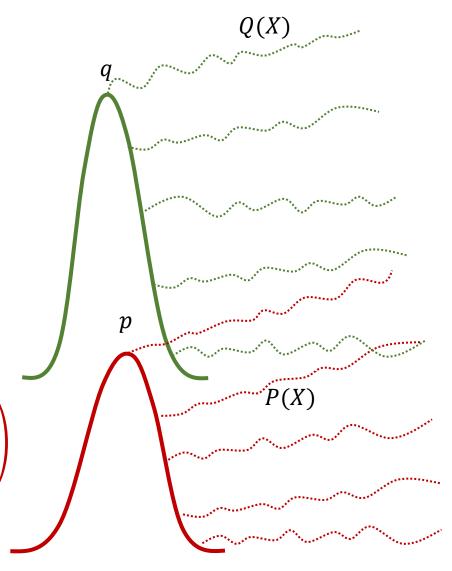
$$P: dX_t = f(X_t, t)dt + \sigma_t dW_t, X_0 \sim p_0 = p$$

$$Q: dX_t = g(X_t, t)dt + \sigma_t dW_t, X_0 \sim q_0 = q$$

$$\frac{\mathrm{d}P}{\mathrm{d}Q}(X) = \lim \frac{p(X_0) \prod N_1(X_{n+1}|X_n)}{q(X_0) \prod N_2(X_{n+1}|X_n)}$$

Initial density ratio

$$= \frac{p(X_0)}{q(X_0)} \exp\left(\int \frac{f_t(X_t)}{\sigma_t^2} \cdot \mathrm{d}X_t - \frac{f_t^2(X_t)}{2\sigma_t^2} \, \mathrm{d}t - \int \frac{g_t(X_t)}{\sigma_t^2} \cdot \mathrm{d}X_t + \frac{g_t^2(X_t)}{2\sigma_t^2} \, \mathrm{d}t\right)$$
Forward Ito Integral $\int a_t(X_t) \cdot \mathrm{d}X_t = \lim \sum a_n(X_n) \cdot (X_{n+1} - X_n)$



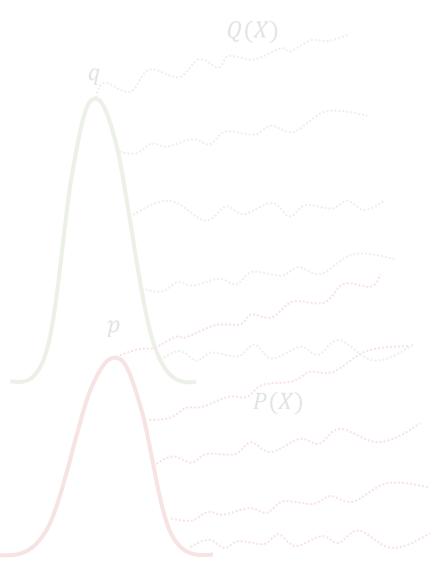
Unnormalised density?

P:
$$dX_t = f(X_t, t)dt + \sigma_t dW_t, X_0 \sim p_0 = p$$

Q: $dX_t = g(X_t, t)dt + \sigma_t dW_t, X_0 \sim q_0 = q$

$$\frac{\mathrm{d}P}{\mathrm{d}Q}(X) = \lim \frac{p(X_0) \prod N_1(X_{n+1}|X_n)}{q(X_0) \prod N_2(X_{n+1}|X_n)}$$

$$= \frac{p(X_0)}{q(X_0)} \exp\left(\int \frac{f_t(X_t)}{\sigma_t^2} \cdot \mathrm{d}X_t - \frac{f_t^2(X_t)}{2\sigma_t^2} \, \mathrm{d}t - \int \frac{g_t(X_t)}{\sigma_t^2} \cdot \mathrm{d}X_t + \frac{g_t^2(X_t)}{2\sigma_t^2} \, \mathrm{d}t\right)$$
Forward Ito Integral
$$\int a_t(X_t) \cdot \mathrm{d}X_t = \lim \sum_{t \in \mathcal{X}_t} a_t(X_t) \cdot (X_{n+1} - X_n)$$



Unnormalised density?

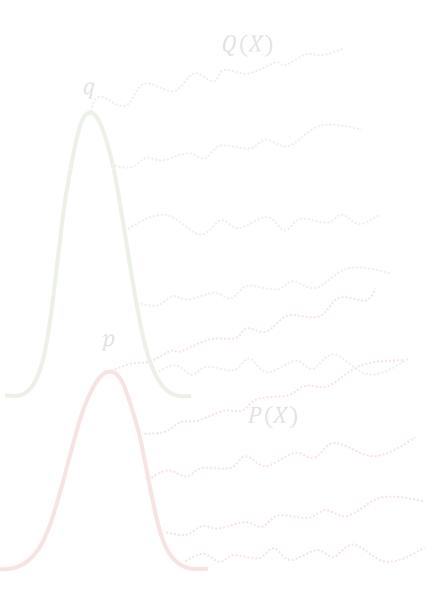
$$P: dX_t = f(X_t, t)dt + \sigma_t dW_t, X_0 \sim \tilde{p}_0 = \tilde{p}$$

$$Q: dX_t = g(X_t, t)dt + \sigma_t dW_t, X_0 \sim \tilde{q}_0 = \tilde{q}$$

$$\frac{\mathrm{d}P}{\mathrm{d}Q}(X) = \lim \frac{p(X_0) \prod N_1(X_{n+1}|X_n)}{q(X_0) \prod N_2(X_{n+1}|X_n)}$$

Initial density ratio

$$= \frac{p(X_0)}{q(X_0)} \exp\left(\int \frac{f_t(X_t)}{\sigma_t^2} \cdot dX_t - \frac{f_t^2(X_t)}{2\sigma_t^2} dt - \int \frac{g_t(X_t)}{\sigma_t^2} \cdot dX_t + \frac{g_t^2(X_t)}{2\sigma_t^2} dt\right)$$
Forward Ito Integral
$$\int a_t(X_t) \cdot dX_t = \lim \sum_{t \in \mathcal{X}} a_t(X_t) \cdot (X_{n+1} - X_n)$$



Unnormalised density?

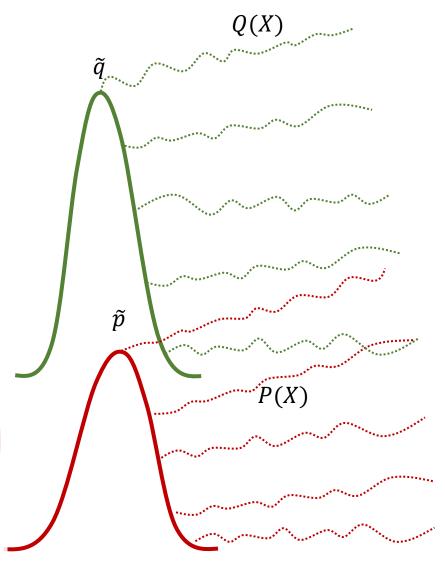
$$P: dX_t = f(X_t, t)dt + \sigma_t dW_t, X_0 \sim \tilde{p}_0 = \tilde{p}$$

$$Q: dX_t = g(X_t, t)dt + \sigma_t dW_t, X_0 \sim \tilde{q}_0 = \tilde{q}$$

$$\frac{\mathrm{d}P}{\mathrm{d}Q}(X) = \lim \frac{p(X_0) \prod N_1(X_{n+1}|X_n)}{q(X_0) \prod N_2(X_{n+1}|X_n)}$$

Initial density ratio

$$= \frac{p(X_0)}{q(X_0)} \exp\left(\int \frac{f_t(X_t)}{\sigma_t^2} \cdot dX_t - \frac{f_t^2(X_t)}{2\sigma_t^2} dt - \int \frac{g_t(X_t)}{\sigma_t^2} \cdot dX_t + \frac{g_t^2(X_t)}{2\sigma_t^2} dt\right)$$
Forward Ito Integral
$$\int a_t(X_t) \cdot dX_t = \lim \sum a_n(X_n) \cdot (X_{n+1} - X_n)$$



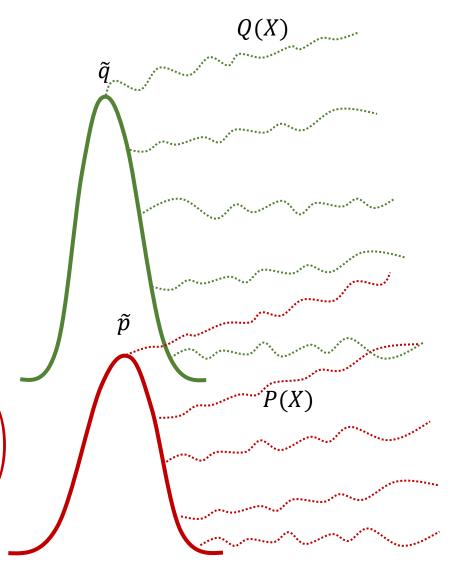
Unnormalised density?

$$P: dX_t = f(X_t, t)dt + \sigma_t dW_t, X_0 \sim \tilde{p}_0 = \tilde{p}$$

$$Q: dX_t = g(X_t, t)dt + \sigma_t dW_t, X_0 \sim \tilde{q}_0 = \tilde{q}$$

$$w(X) = \frac{Z_p dP}{Z_q dQ}(X) = \lim \frac{\tilde{p}(X_0) \prod N_1(X_{n+1}|X_n)}{\tilde{q}(X_0) \prod N_2(X_{n+1}|X_n)}$$
Initial density ratio

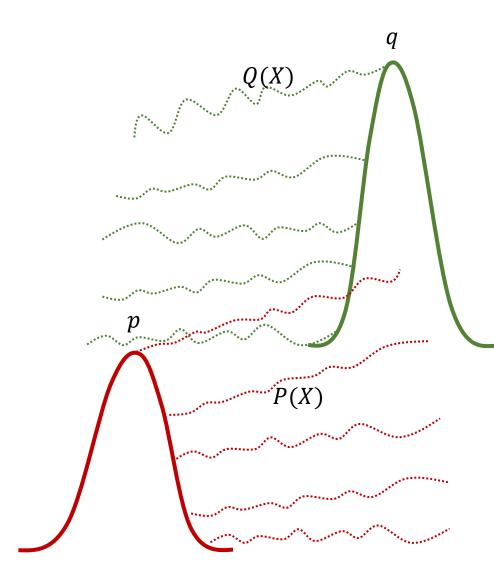
$$= \frac{\tilde{p}(X_0)}{\tilde{q}(X_0)} \exp\left(\int \frac{f_t(X_t)}{\sigma_t^2} \cdot dX_t - \frac{f_t^2(X_t)}{2\sigma_t^2} dt - \int \frac{g_t(X_t)}{\sigma_t^2} \cdot dX_t + \frac{g_t^2(X_t)}{2\sigma_t^2} dt\right)$$
Forward Ito Integral
$$\int a_t(X_t) \cdot dX_t = \lim_{t \to \infty} \sum a_n(X_n) \cdot (X_{n+1} - X_n)$$



Forward-backward RND (FB-RND)

 $P: dX_t = f(X_t, t)dt + \sigma_t \underline{dW_t}, X_0 \sim \tilde{p}_0 = \tilde{p}$

 $Q: dX_t = g(X_t, t)dt + \sigma_t \overline{dW_t}, X_1 \sim \tilde{q}_1 = \tilde{q}$

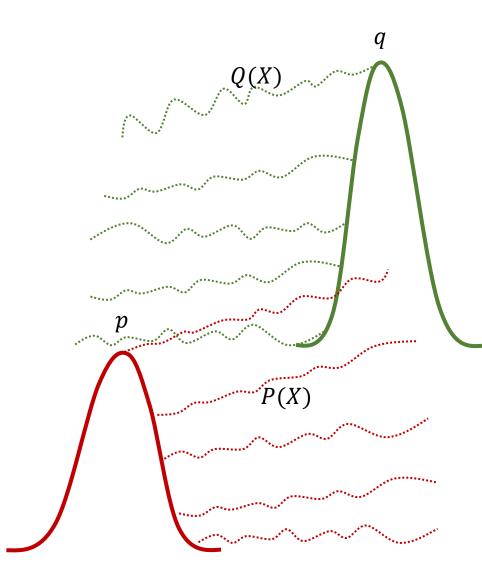


Forward-backward RND (FB-RND)

$$P: dX_t = f(X_t, t)dt + \sigma_t dW_t, X_0 \sim \tilde{p}_0 = \tilde{p}$$

$$Q: dX_t = g(X_t, t)dt + \sigma_t dW_t, X_1 \sim \tilde{q}_1 = \tilde{q}$$

$$w(X) = \frac{Z_p}{Z_q} \frac{\mathrm{d}P}{\mathrm{d}\tilde{Q}}(X) = \lim \frac{\tilde{p}_0(X_0) \prod N_1(X_{n+1}|X_n)}{\tilde{q}_1(X_1) \prod N_2(X_n|X_{n+1})}$$
Initial density ratio



Forward-backward RND (FB-RND)

$$P: dX_t = f(X_t, t)dt + \sigma_t dW_t, X_0 \sim \tilde{p}_0 = \tilde{p}$$

$$Q: dX_t = g(X_t, t)dt + \sigma_t \overline{dW_t}, X_1 \sim \tilde{q}_1 = \tilde{q}$$

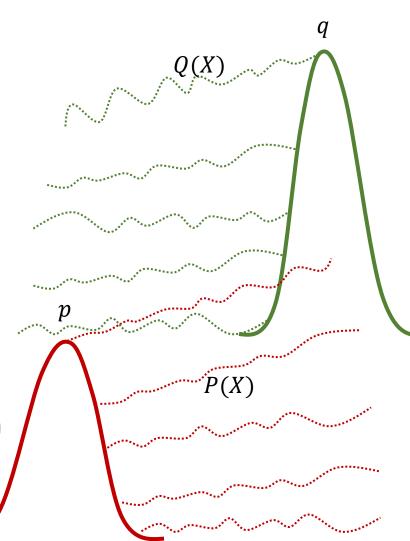
$$w(X) = \frac{Z_p}{Z_q} \frac{\mathrm{d}P}{\mathrm{d}\tilde{Q}}(X) = \lim \frac{\tilde{p}_0(X_0) \prod N_1(X_{n+1}|X_n)}{\tilde{q}_1(X_1) \prod N_2(X_n|X_{n+1})}$$

Transition kernel ratio

$$= \frac{\tilde{p}_0(X_0)}{\tilde{q}_1(X_1)} \exp\left(\int \frac{f_t(X_t)}{\sigma_t^2} \cdot dX_t - \frac{f_t^2(X_t)}{2\sigma_t^2} dt - \int \frac{g_t(X_t)}{\sigma_t^2} \cdot \overleftarrow{dX_t} + \frac{g_t^2(X_t)}{2\sigma_t^2} dt\right)$$

$$\int a_t(X_t) \cdot \overleftarrow{dX_t} = \lim \sum a_{n+1}(X_{n+1}) \cdot (X_{n+1} - X_n) \text{ Backward Ito Integral}$$

Initial density ratio



A Side Note on Stochastic Intergrals

Ito forward integral

$$\int a_t(X_t) \cdot dX_t = \lim \sum a_n(X_n) \cdot (X_{n+1} - X_n)$$

Ito backward integral

$$\int a_t(X_t) \cdot \overleftarrow{dX_t} = \lim \sum a_{n+1}(X_{n+1}) \cdot (X_{n+1} - X_n)$$

Conversion rule:

$$\int a_t(X_t) \cdot dX_t - \int a_t(X_t) \cdot \overleftarrow{dX_t} = -\int \sigma_t^2 \nabla \cdot a_t dt$$

Unnormalised density 1: \tilde{p}

Unnormalised density 2: \tilde{q}

Density ratio: $w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$

Path measure 1: P

"Unnormalised" RND:
$$w(X) = \frac{Z_p}{Z_q} \frac{dP}{dQ}(X)$$

Unnormalised density 1: \tilde{p}

Unnormalised density 2: \tilde{q}

Density ratio: $w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$

Path measure 1: P

"Unnormalised" RND:
$$w(X) = \frac{Z_p}{Z_q} \frac{dP}{dQ}(X)$$

- Importance sampling: $w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$
- FEP: $\Delta F = -\log(\int q(x)w(x) dx)$
- PT Swap: $\alpha = \min\{1, \frac{w(y)}{w(x)}\}$

Unnormalised density 1: \tilde{p}

Unnormalised density 2: \tilde{q}

Density ratio: $w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$

Path measure 1: P

"Unnormalised" RND:
$$w(X) = \frac{Z_p}{Z_q} \frac{dP}{dQ}(X)$$

- Importance sampling: $w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$
- FEP: $\Delta F = -\log(\int q(x)w(x) dx)$
- PT Swap: $\alpha = \min\{1, \frac{w(y)}{w(x)}\}$

- Path Importance sampling: w(X)
- Path FEP: $\Delta F = -\log(\int dQ(X)w(X))$
- Path PT Swap: $\alpha = \min\{1, \frac{w(Y)}{w(X)}\}$

Unnormalised den Wait... WHY PATHPasure 1: P
Unnormalised density 2: q
Path measure 2: Q

Density ratio: $w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$

"Unnormalised" RND: $w(X) = \frac{Z_p}{Z_q} \frac{dP}{dQ}(X)$

- Importance sampling: $w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$
- FEP: $\Delta F = -\log(\int q(x)w(x) dx)$
- PT Swap: $\alpha = \min\{1, \frac{w(y)}{w(x)}\}$

- Path Importance sampling: w(X)
- Path FEP: $\Delta F = -\log(\int dQ(X)w(X))$
- Path PT Swap: $\alpha = \min\{1, \frac{w(Y)}{w(X)}\}$

Unnormalised density 2: \tilde{q} WHY PATH Pagure 1: Unnormalised density 2: \tilde{q}

Density ratio:
$$w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$$

- Importance sampling: $w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$
- FEP: $\Delta F = -\log(\int q(x)w(x) dx)$
- PT Swap: $\alpha = \min\{1, \frac{w(y)}{w(x)}\}$

"Unnormalised" RND: $w(X) = \frac{p}{Z_q} \frac{dQ}{dQ}(X)$ • Path Importance sampling: w(X)

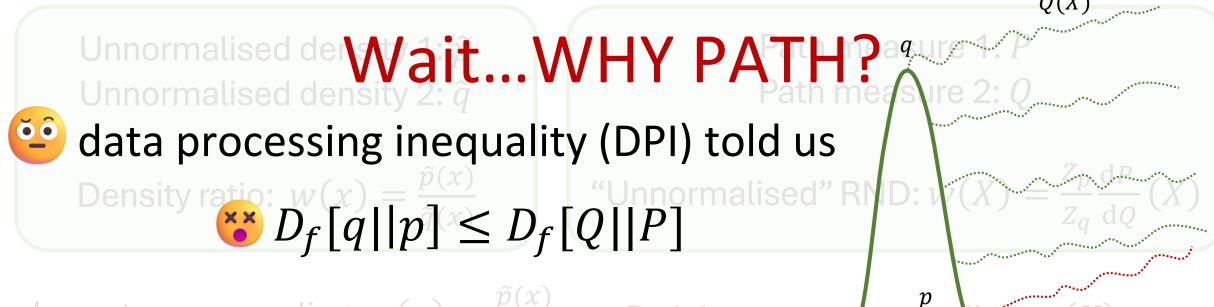
Unnormalised density 2: q VHY PATHPage Path meas

ata processing inequality (DPI) told us

Density ratio: $w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$

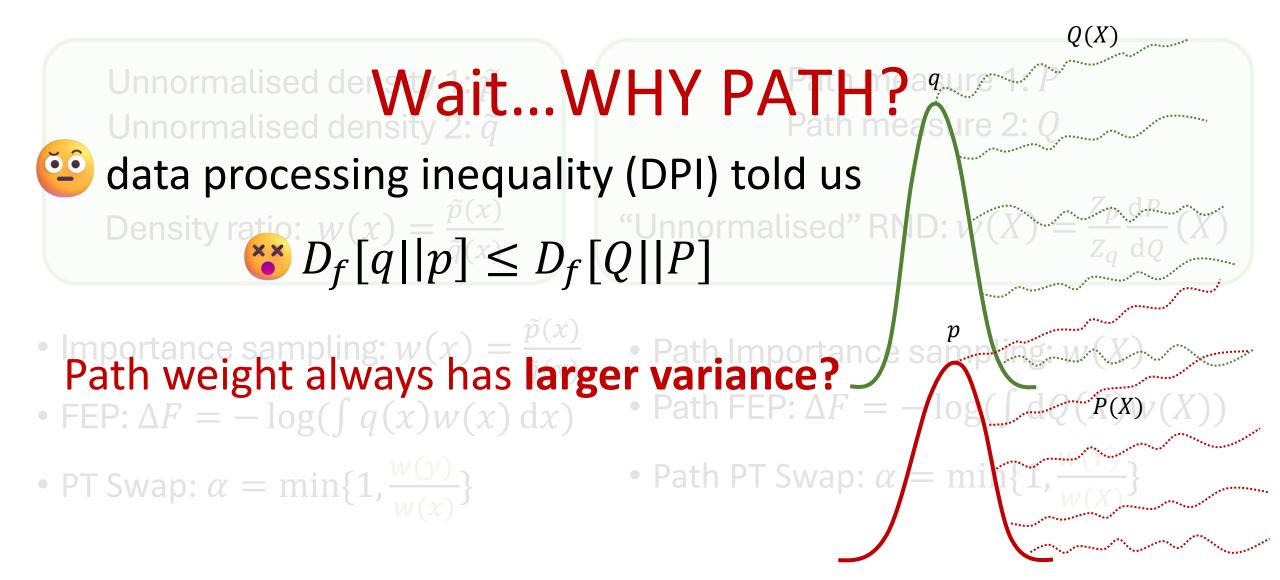
- Importance sampling: $w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$
- FEP: $\Delta F = -\log(\int q(x)w(x) dx)$
- PT Swap: $\alpha = \min\{1, \frac{w(y)}{w(x)}\}$

- Path Importance sampling: w(X)
- Path FEP: $\Delta F = -\log(\int dQ(R(X)v(X)))$
- Path PT Swap: α



- Importance sampling: $w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$
- FEP: $\Delta F = -\log(\int q(x)w(x) dx)$
- PT Swap: $\alpha = \min\{1, \frac{w(y)}{w(x)}\}$

- Path Importance sampling: u(X)
- Path FEP: $\Delta F = -\log(\int dQ(R(X)v(X)))$
- Path PT Swap: α



Path weight always has larger variance?

Path measure 1: P

"Unnormalised" RND:
$$w(X) = \frac{Z_p}{Z_q} \frac{dP}{dQ}(X)$$

- Importance sampling: $w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$
- FEP: $\Delta F = -\log(\int q(x)w(x) dx)$
- PT Swap: $\alpha = \min\{1, \frac{w(y)}{w(x)}\}$

- Path Importance sampling: w(X)
- Path FEP: $\Delta F = -\log(\int dQ(X)w(X))$
- Path PT Swap: $\alpha = \min\{1, \frac{w(Y)}{w(X)}\}$

Path weight always has larger variance?

- Importance sampling: $w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$
- FEP: $\Delta F = -\log(\int q(x)w(x) dx)$
- PT Swap: $\alpha = \min\{1, \frac{w(y)}{w(x)}\}$

Path Importance sampling: w (X)

• Path FEP: $\Delta F = -\log(\int dQ(X))w(X)$

Path PT Swap: $\alpha = \min\{1, \frac{w(r)}{w(x)}\}$

Path weight always has larger variance?

Not for FB RND!

If $\overline{Q} = P$ (time-reversal) "Unnormali The path weight will have 0 variance

- Importance sampling: $w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$
- FEP: $\Delta F = -\log(\int q(x)w(x) dx)$
- PT Swap: $\alpha = \min\{1, \frac{w(y)}{w(x)}\}$

- Path Importance ampling:
- Path FEP: $\Delta F = -\log(\int dQ(X))w(X)$
- Path PT Swap: $\alpha=\mathrm{mi}$

Time-reversal and Nelson's relation

$$P: dX_t = f(X_t, t)dt + \sigma_t dW_t, X_0 \sim p_0$$

$$\overleftarrow{Q}: dX_t = g(X_t, t)dt + \sigma_t dW_t, X_1 \sim p_1$$

"time-reversal"

$$\overleftarrow{Q} = P$$
, i. e., $\frac{\overleftarrow{dQ}}{dP} = 1$

Iff

$$g(\cdot, t) = f(\cdot, t) - \sigma_t^2 \nabla \log p_t(\cdot)$$

Path measure 1: P

"Unnormalised" RND:
$$w(X) = \frac{Z_p}{Z_q} \frac{dP}{dQ}(X)$$

- Path Importance sampling: w(X)
- Path FEP: $\Delta F = -\log(\int dQ(X)w(X))$
- Path PT Swap: $\alpha = \min\{1, \frac{w(Y)}{w(X)}\}$

Path measure 1: P

"Unnormalised" RND:
$$w(X) = \frac{Z_p}{Z_q} \frac{dP}{dQ}(X)$$

- Path Importance sampling: w(X)
- Path FEP: $\Delta F = -\log(\int \mathrm{d}Q(X)w(X))$ (escorted) Jarzynski/Crooks
- Path PT Swap: $\alpha = \min\{1, \frac{w(Y)}{w(X)}\}$ Replica exchange with nonequilibrium switches [1] / Accelerated PT [2]

Path measure 1: P

Path measure 2: Q

"Unnormalised" RND:
$$w(X) = \frac{Z_p}{Z_q} \frac{dP}{dQ}(X)$$

Equilibrium method and nonequilibrium ones are not too different:

One use Marginal space RND

One use Path space RND

- Path Importance sampling: w(X)
- Path FEP: $\Delta F = -\log(\int dQ(X)w(X))$ (escorted) Jarzynski/Crooks
- Path PT Swap: $\alpha = \min\{1, \frac{w(Y)}{w(X)}\}$

Replica exchange with nonequilibrium switches [1] / Accelerated PT [2]

$$X_0 \sim q \qquad dX_t = -\sigma^2 \nabla U_t(X_t) dt + \sigma \sqrt{2} \, \overrightarrow{dW_t},$$

$$X_1 \sim p \qquad dX_t = \sigma^2 \nabla U_t(X_t) dt + \sigma \sqrt{2} \, \overleftarrow{dW_t},$$

$$X_0 \sim q \qquad dX_t = -\sigma^2 \nabla U_t(X_t) dt + \sigma \sqrt{2} \, \overrightarrow{dW_t},$$

$$X_1 \sim p \qquad dX_t = \sigma^2 \nabla U_t(X_t) dt + \sigma \sqrt{2} \, \overleftarrow{dW_t},$$

$$\frac{\overrightarrow{dP}}{dQ} = \frac{p(X_1)}{q(X_0)} \exp\left(\int \frac{\nabla U_t}{2} \cdot dX_t + \frac{\sigma_t^2}{4} |\nabla U_t|^2 dt + \int \frac{\nabla U_t}{2} \cdot \overrightarrow{dX_t} - \frac{\sigma_t^2}{4} |\nabla U_t|^2 dt\right)$$

$$\begin{split} X_0 &\sim q & \mathrm{d} X_t = -\sigma^2 \nabla U_t(X_t) \mathrm{d} t + \sigma \sqrt{2} \; \overrightarrow{\mathrm{d} W_t}, \\ X_1 &\sim p & \mathrm{d} X_t = \sigma^2 \nabla U_t(X_t) \mathrm{d} t + \sigma \sqrt{2} \; \overleftarrow{\mathrm{d} W_t}, \end{split}$$

$$\begin{split} \frac{\overleftarrow{\mathrm{dP}}}{\mathrm{dQ}} &= \frac{p(X_1)}{q(X_0)} \exp\left(\int \frac{\nabla U_t}{2} \cdot \mathrm{d}X_t + \frac{\sigma_t^2}{4} |\nabla U_t|^2 \mathrm{d}t + \int \frac{\nabla U_t}{2} \cdot \overleftarrow{\mathrm{d}X_t} - \frac{\sigma_t^2}{4} |\nabla U_t|^2 \mathrm{d}t\right) \\ &= \frac{p(X_1)}{q(X_0)} \exp\left(\int \frac{\nabla U_t}{2} \cdot \mathrm{d}X_t + \int \frac{\nabla U_t}{2} \cdot \overleftarrow{\mathrm{d}X_t}\right) \end{split}$$

$$X_0 \sim q \qquad dX_t = -\sigma^2 \nabla U_t(X_t) dt + \sigma \sqrt{2} \, \overrightarrow{dW_t},$$

$$X_1 \sim p \qquad dX_t = \sigma^2 \nabla U_t(X_t) dt + \sigma \sqrt{2} \, \overleftarrow{dW_t},$$

$$\begin{split} \frac{\overleftarrow{\mathrm{dP}}}{\mathrm{dQ}} &= \frac{p(X_1)}{q(X_0)} \exp\left(\int \frac{\nabla U_t}{2} \cdot \mathrm{d}X_t + \frac{\sigma_t^2}{4} |\nabla U_t|^2 \mathrm{d}t + \int \frac{\nabla U_t}{2} \cdot \overleftarrow{\mathrm{d}X_t} - \frac{\sigma_t^2}{4} |\nabla U_t|^2 \mathrm{d}t\right) \\ &= \frac{p(X_1)}{q(X_0)} \exp\left(\int \frac{\nabla U_t}{2} \cdot \mathrm{d}X_t + \int \frac{\nabla U_t}{2} \cdot \overleftarrow{\mathrm{d}X_t}\right) \end{split}$$

$$X_0 \sim q \qquad dX_t = -\sigma^2 \nabla U_t(X_t) dt + \sigma \sqrt{2} \, \overrightarrow{dW_t},$$

$$X_1 \sim p \qquad dX_t = \sigma^2 \nabla U_t(X_t) dt + \sigma \sqrt{2} \, \overleftarrow{dW_t},$$

$$\frac{\overleftarrow{dP}}{dQ} = \frac{p(X_1)}{q(X_0)} \exp\left(\int \frac{\nabla U_t}{2} \cdot dX_t + \frac{\sigma_t^2}{4} |\nabla U_t|^2 dt + \int \frac{\nabla U_t}{2} \cdot \overleftarrow{dX_t} - \frac{\sigma_t^2}{4} |\nabla U_t|^2 dt\right)$$

$$= \frac{p(X_1)}{q(X_0)} \exp\left(\int \frac{\nabla U_t}{2} \cdot dX_t + \int \frac{\nabla U_t}{2} \cdot \overleftarrow{dX_t}\right)$$

$$= \frac{p(X_1)}{q(X_0)} \exp\left(\int \nabla U_t \cdot dX_t + \int \sigma_t^2 \Delta U_t dt\right) \qquad \text{conversion rule}$$

$$X_0 \sim q \qquad dX_t = -\sigma^2 \nabla U_t(X_t) dt + \sigma \sqrt{2} \, \overrightarrow{dW_t},$$

$$X_1 \sim p \qquad dX_t = \sigma^2 \nabla U_t(X_t) dt + \sigma \sqrt{2} \, \overleftarrow{dW_t},$$

$$\frac{\overline{dP}}{dQ} = \frac{p(X_1)}{q(X_0)} \exp\left(\int \nabla U_t \cdot dX_t + \int \sigma_t^2 \Delta U_t dt\right)$$

$$X_0 \sim q \qquad dX_t = -\sigma^2 \nabla U_t(X_t) dt + \sigma \sqrt{2} \, \overrightarrow{dW_t},$$

$$X_1 \sim p \qquad dX_t = \sigma^2 \nabla U_t(X_t) dt + \sigma \sqrt{2} \, \overleftarrow{dW_t},$$

$$\frac{\overleftarrow{\mathrm{dP}}}{\mathrm{dQ}} = \frac{p(X_1)}{q(X_0)} \exp\left(\int \nabla U_t \cdot \mathrm{d}X_t + \int \sigma_t^2 \Delta U_t \mathrm{d}t\right)$$

$$df_t(X_t) = (\partial_t f(X_t) + \sigma_t^2 \Delta f) dt + \nabla U_t \cdot dX_t$$

$$X_0 \sim q \qquad dX_t = -\sigma^2 \nabla U_t(X_t) dt + \sigma \sqrt{2} \, \overrightarrow{dW_t},$$

$$X_1 \sim p \qquad dX_t = \sigma^2 \nabla U_t(X_t) dt + \sigma \sqrt{2} \, \overleftarrow{dW_t},$$

$$\frac{\overline{dP}}{dQ} = \frac{p(X_1)}{q(X_0)} \exp\left(\int \nabla U_t \cdot dX_t + \int \sigma_t^2 \Delta U_t dt\right)$$

$$= \frac{p(X_1)}{q(X_0)} \exp\left(\int dU_t(X_t) - \partial_t U_t(X_t) dt\right) \qquad \text{Ito's lemma}$$

$$df_t(X_t) = (\partial_t f(X_t) + \sigma_t^2 \Delta f) dt + \nabla U_t \cdot dX_t$$

Ito's lemma
$$df_t(X_t) = (\partial_t f(X_t) + \sigma_t^2 \Delta f) dt + \nabla U_t \cdot dX_t$$

$$X_{0} \sim q \qquad dX_{t} = -\sigma^{2} \nabla U_{t}(X_{t}) dt + \sigma \sqrt{2} dW_{t},$$

$$X_{1} \sim p \qquad dX_{t} = \sigma^{2} \nabla U_{t}(X_{t}) dt + \sigma \sqrt{2} dW_{t},$$

$$\frac{dP}{dQ} = \frac{p(X_{1})}{q(X_{0})} \exp \left(\int \nabla U_{t} \cdot dX_{t} + \int \sigma_{t}^{2} \Delta U_{t} dt \right)$$

$$= \frac{p(X_{1})}{q(X_{0})} \exp \left(\int dU_{t}(X_{t}) - \partial_{t} U_{t}(X_{t}) dt \right) \qquad \text{Ito's lemma}$$

$$df_{t}(X_{t}) = (\partial_{t} f(X_{t}) + \sigma_{t}^{2} \Delta f) dt + \nabla U_{t} \cdot dX_{t}$$

$$= \frac{p(X_{1})}{q(X_{0})} \exp \left(U_{1}(X_{1}) - U_{0}(X_{0}) + \int -\partial_{t} U_{t}(X_{t}) dt \right)$$

$$\begin{split} X_0 &\sim q & \mathrm{d}X_t = -\sigma^2 \nabla U_t(X_t) \mathrm{d}t + \sigma \sqrt{2} \; \overline{\mathrm{d}W_t}, \\ X_1 &\sim p & \mathrm{d}X_t = \sigma^2 \nabla U_t(X_t) \mathrm{d}t + \sigma \sqrt{2} \; \overline{\mathrm{d}W_t}, \\ & \overline{\mathrm{d}P} = \frac{p(X_1)}{q(X_0)} \exp\left(\int \nabla U_t \cdot \mathrm{d}X_t + \int \sigma_t^2 \Delta U_t \mathrm{d}t\right) \\ &= \frac{p(X_1)}{q(X_0)} \exp\left(\int \mathrm{d}U_t(X_t) - \partial_t U_t(X_t) \mathrm{d}t\right) & \text{lto's lemma} \\ &= \frac{Z_0 \exp(-U_1(X_1))}{Z_1 \exp(-U_0(X_0))} \exp\left(U_1(X_1) - U_0(X_0) + \int -\partial_t U_t(X_t) \mathrm{d}t\right) \end{split}$$

$$X_{0} \sim q \qquad dX_{t} = -\sigma^{2} \nabla U_{t}(X_{t}) dt + \sigma \sqrt{2} \ \overline{dW_{t}},$$

$$X_{1} \sim p \qquad dX_{t} = \sigma^{2} \nabla U_{t}(X_{t}) dt + \sigma \sqrt{2} \ \overline{dW_{t}},$$

$$\frac{\overline{dP}}{dQ} = \frac{p(X_{1})}{q(X_{0})} \exp\left(\int \nabla U_{t} \cdot dX_{t} + \int \sigma_{t}^{2} \Delta U_{t} dt\right)$$

$$= \frac{p(X_{1})}{q(X_{0})} \exp\left(\int dU_{t}(X_{t}) - \partial_{t} U_{t}(X_{t}) dt\right)$$

$$= \frac{Z_{0} \exp(-U_{1}(X_{1}))}{Z_{1} \exp(-U_{0}(X_{0}))} \exp\left(U_{1}(X_{1}) - U_{0}(X_{0}) + \int -\partial_{t} U_{t}(X_{t}) dt\right)$$

$$X_{0} \sim q \qquad dX_{t} = -\sigma^{2} \nabla U_{t}(X_{t}) dt + \sigma \sqrt{2} \overrightarrow{dW_{t}},$$

$$X_{1} \sim p \qquad dX_{t} = \sigma^{2} \nabla U_{t}(X_{t}) dt + \sigma \sqrt{2} \overleftarrow{dW_{t}},$$

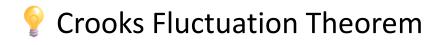
$$\frac{\overrightarrow{dP}}{dQ} = \frac{p(X_{1})}{q(X_{0})} \exp\left(\int \nabla U_{t} \cdot dX_{t} + \int \sigma_{t}^{2} \Delta U_{t} dt\right)$$

$$= \frac{p(X_{1})}{q(X_{0})} \exp\left(\int dU_{t}(X_{t}) - \partial_{t} U_{t}(X_{t}) dt\right)$$

$$= \frac{Z_{0}}{Z_{1}} \exp\left(\int -\partial_{t} U_{t}(X_{t}) dt\right)$$

$$\begin{split} X_0 &\sim q & \mathrm{d} X_t = -\sigma^2 \nabla U_t(X_t) \mathrm{d} t + \sigma \sqrt{2} \; \overrightarrow{\mathrm{d} W_t}, \\ X_1 &\sim p & \mathrm{d} X_t = \sigma^2 \nabla U_t(X_t) \mathrm{d} t + \sigma \sqrt{2} \; \overleftarrow{\mathrm{d} W_t}, \end{split}$$

$$\frac{\overline{\mathrm{dP}}}{\mathrm{dQ}} = \frac{Z_0}{Z_1} \exp\left(\int -\partial_t U_t(X_t) \mathrm{d}t\right)$$
 \rightarrow Crooks Fluctuation Theorem



$$\begin{split} X_0 &\sim q & \mathrm{d} X_t = -\sigma^2 \nabla U_t(X_t) \mathrm{d} t + \sigma \sqrt{2} \; \overrightarrow{\mathrm{d} W_t}, \\ X_1 &\sim p & \mathrm{d} X_t = \sigma^2 \nabla U_t(X_t) \mathrm{d} t + \sigma \sqrt{2} \; \overleftarrow{\mathrm{d} W_t}, \end{split}$$

$$\frac{\overline{\mathrm{dP}}}{\mathrm{dQ}} = \frac{Z_0}{Z_1} \exp\left(\int -\partial_t U_t(X_t) \mathrm{d}t\right)$$
 \quad \text{Crooks Fluctuation Theorem}

$$\mathbf{E}_{\mathbf{Q}}\left[\frac{\overleftarrow{\mathrm{dP}}}{\mathrm{dQ}}\right] = \mathbf{E}_{\mathbf{Q}}\left[\frac{Z_0}{Z_1}\exp\left(\int -\partial_t U_t(X_t)\mathrm{d}t\right)\right] = 1 \qquad \qquad \text{§ Jarzynski Equation}$$

From Jarzynski to Escorted Jarzynski

$$X_0 \sim q \qquad \mathrm{d}X_t = \left[-\sigma^2 \nabla U_t(X_t) + u_t(X_t) \right] \mathrm{d}t + \sigma \sqrt{2} \ \overline{\mathrm{d}W_t},$$

$$X_1 \sim p \qquad \mathrm{d}X_t = \left[\sigma^2 \nabla U_t(X_t) + u_t(X_t) \right] \mathrm{d}t + \sigma \sqrt{2} \ \overline{\mathrm{d}W_t},$$

$$\frac{\overline{\mathrm{d}\mathbf{P}}}{\mathrm{d}\mathbf{Q}} = \frac{Z_0}{Z_1} \exp\left(\int -\partial_t U_t(X_t) \mathrm{d}t - \nabla U_t \cdot u_t \mathrm{d}t + \nabla \cdot u_t \mathrm{d}t\right)$$

Controlled Crooks Fluctuation Theorem

$$\mathbf{E}_{\mathbf{Q}} \left[\exp \left(\int -\partial_t U_t(X_t) dt - \nabla U_t \cdot u_t dt + \nabla \cdot u_t dt \right) \right] = \frac{Z_1}{Z_0}$$
• Escorted Jarzynski Equation

From Jarzynski to Escorted Jarzynski

$$X_0 \sim q \qquad dX_t = \left[-\sigma^2 \nabla U_t(X_t) + u_t(X_t) \right] dt + \sigma \sqrt{2} \ \overrightarrow{dW_t},$$

$$X_1 \sim p \qquad dX_t = \left[\sigma^2 \nabla U_t(X_t) + u_t(X_t) \right] dt + \sigma \sqrt{2} \ \overrightarrow{dW_t},$$

$$\frac{\overline{\mathrm{d}\mathbf{P}}}{\mathrm{d}\mathbf{Q}} = \frac{Z_0}{Z_1} \exp\left(\int -\partial_t U_t(X_t) \mathrm{d}t - \nabla U_t \cdot u_t \mathrm{d}t + \nabla \cdot u_t \mathrm{d}t\right)$$

Controlled Crooks Fluctuation Theorem

$$\mathbf{E}_{\mathbf{Q}} \left[\exp \left(\int -\partial_t U_t(X_t) \mathrm{d}t - \nabla U_t \cdot u_t \mathrm{d}t + \nabla \cdot u_t \mathrm{d}t \right) \right] = \frac{Z_1}{Z_0}$$

$$\mathbf{E}_{\mathbf{Q}} \left[\exp \left(\int -\partial_t U_t(X_t) \mathrm{d}t - \nabla U_t \cdot u_t \mathrm{d}t + \nabla \cdot u_t \mathrm{d}t \right) \right] = \frac{Z_1}{Z_0}$$

$$\mathbf{E}_{\mathbf{Q}} \left[\exp \left(\int -\partial_t U_t(X_t) \mathrm{d}t - \nabla U_t \cdot u_t \mathrm{d}t + \nabla \cdot u_t \mathrm{d}t \right) \right] = \frac{Z_1}{Z_0}$$

Can also be derived via PDEs [1] / Feynman-Kac formula [2]:

- [1] Albergo, M. S., & Vanden-Eijnden, E (2025). NETS: A Non-equilibrium Transport Sampler. ICML 2025.
- [2] Skreta, M., Akhound-Sadegh, T., Ohanesian, V., Bondesan, R., Aspuru-Guzik, A., Doucet, A., ... & Neklyudov, K. (2025). Feynman-kac correctors in diffusion: Annealing, guidance, and product of experts. *ICML 2025*.

From Density Ratio to Path RND

Path measure 1: P

Path measure 2: Q

"Unnormalised" RND:
$$w(X) = \frac{Z_p}{Z_q} \frac{dP}{dQ}(X)$$

Equilibrium method and nonequilibrium ones are not too different:

One use Marginal space RND

One use Path space RND

Path Importance sampling: w(X)Path FEP: $\Delta F = -\log(\int dQ(X)w(X))$

(escorted) Jarzynski/Crooks

• Path PT Swap: $\alpha = \min\{1, \frac{w(Y)}{w(X)}\}$

Replica exchange with nonequilibrium switches [1] / Accelerated PT [2]

From Density Ratio to Path RND

Path measure 1: P

Path measure 2: Q

"Unnormalised" RND: $w(X) = \frac{Z_p}{Z_q} \frac{dP}{dQ}(X)$

Equilibrium method and nonequilibrium ones are not too different:

One use Marginal space RND

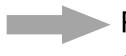
One use Path space RND

Path Importance sampling: w(X)

Path FEP: $\Delta F = -\log(\int dQ(X)w(X))$

(escorted) Jarzynski/Crooks

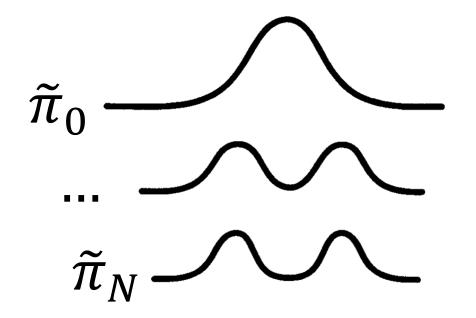
• Path PT Swap: $\alpha = \min\{1, \frac{w(Y)}{w(X)}\}$



Replica exchange with nonequilibrium switches [1] / Accelerated PT [2]

Parallel tempering

- An MCMC algorithm for target density $\tilde{\pi}_N$
- Workflow:
 - Choose an easy-to-sample reference $\tilde{\pi}_0$
 - Design multiple intermediate targets $ilde{\pi}_n$
 - Design two MCMC kernels with invariant measure as $\tilde{\pi}_0 \times \tilde{\pi}_1 \times \cdots \times \tilde{\pi}_N$
 - 1. Local exploration kernel: independent MCMC for each $ilde{\pi}_n$
 - 2. Communication kernel: swap between all adjacent pairs $(\tilde{\pi}_n, \tilde{\pi}_{n+1})$



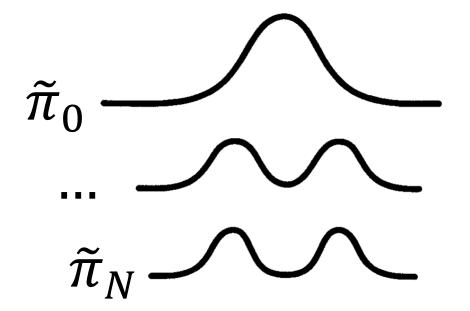
Parallel tempering

- An MCMC algorithm for target density $\tilde{\pi}_N$
- Workflow:
 - Choose an easy-to-sample reference $\tilde{\pi}_0$
 - Design multiple intermediate targets $\tilde{\pi}_n$
 - Design two MCMC kernels with invariant measure as $\tilde{\pi}_0 \times \tilde{\pi}_1 \times \cdots \times \tilde{\pi}_N$

Unchanged!

- 1. Local exploration kernel: independent MCMC for each $ilde{\pi}_n$
- 2. Communication kernel: swap between all adjacent pairs $(\tilde{\pi}_n, \tilde{\pi}_{n+1})$

Extend to path!

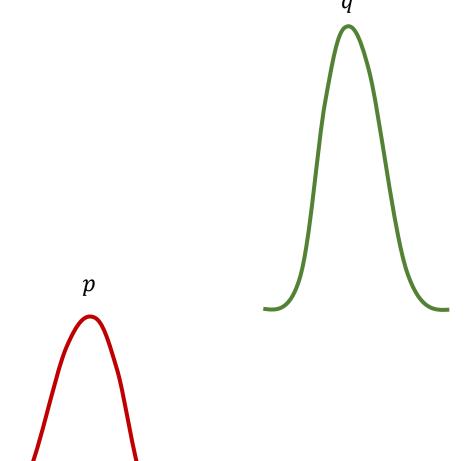


Path measure 1: P

Path measure 2: Q

"Unnormalised" RND:
$$w(X) = \frac{Z_p}{Z_q} \frac{dP}{dQ}(X)$$

(1) Current state $(x, y) \sim p(x) \times q(y)$



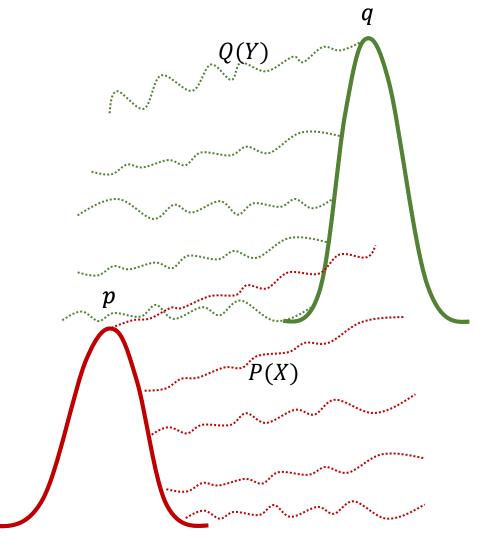
Path measure 1: P

Path measure 2: Q

"Unnormalised" RND:
$$w(X) = \frac{Z_p}{Z_q} \frac{dP}{dQ}(X)$$

(2) Extend current states with path

$$(X,Y) \sim P(X) \times Q(Y)$$



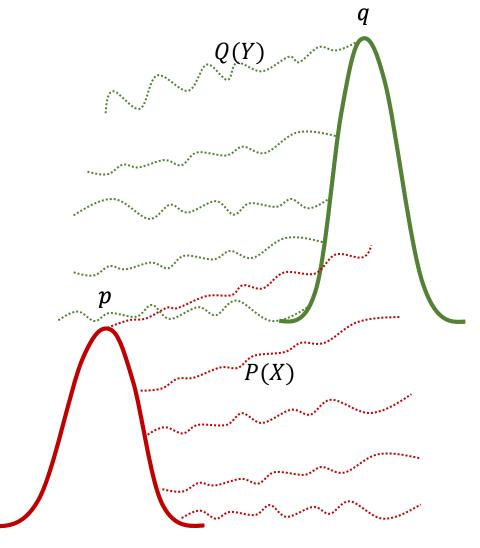
Path measure 1: P

Path measure 2: Q

"Unnormalised" RND:
$$w(X) = \frac{Z_p}{Z_q} \frac{dP}{dQ}(X)$$

(3) Swap the Paths

$$(X',Y') \leftarrow (Y,X)$$



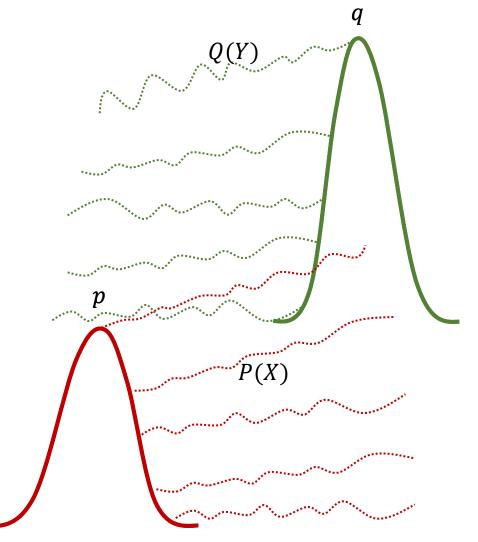
*Note that this proposal function is still involution

Path measure 1: P

Path measure 2: Q

"Unnormalised" RND:
$$w(X) = \frac{Z_p}{Z_q} \frac{dP}{dQ}(X)$$

$$\alpha = \min\{1, \frac{d P(X') \times Q(Y')}{d P(X) \times Q(Y)}\}\$$

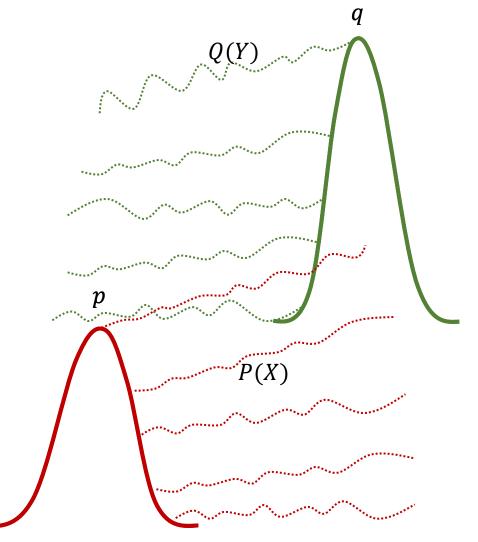


Path measure 1: P

Path measure 2: Q

"Unnormalised" RND:
$$w(X) = \frac{Z_p}{Z_q} \frac{dP}{dQ}(X)$$

$$\alpha = \min\{1, \frac{d P(Y) \times Q(X)}{d P(X) \times Q(Y)}\}\$$

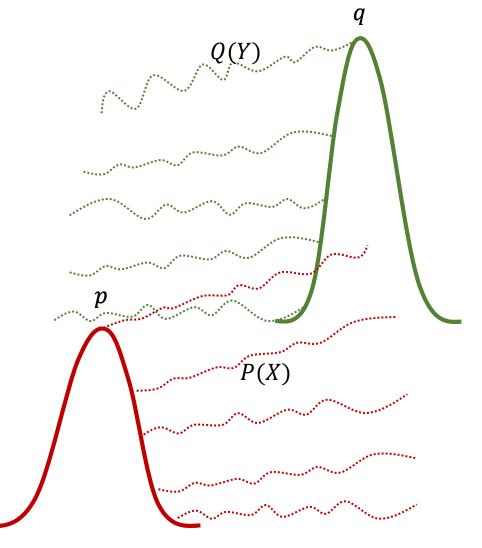


Path measure 1: P

Path measure 2: Q

"Unnormalised" RND:
$$w(X) = \frac{Z_p}{Z_q} \frac{dP}{dQ}(X)$$

$$\alpha = \min\{1, \frac{d P(Y) \times Q(X)}{d P(X) \times Q(Y)}\}\$$

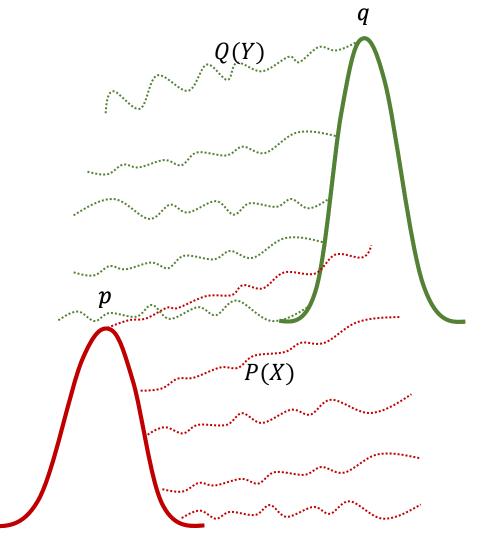


Path measure 1: P

Path measure 2: Q

"Unnormalised" RND:
$$w(X) = \frac{Z_p}{Z_q} \frac{dP}{dQ}(X)$$

$$\alpha = \min\{1, \frac{dP}{dQ}(Y) \frac{dQ}{dP}(X)\}$$



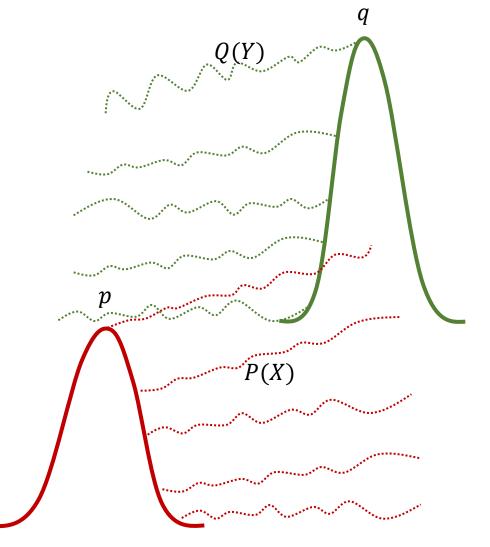
Path measure 1: P

Path measure 2: Q

"Unnormalised" RND:
$$w(X) = \frac{Z_p}{Z_q} \frac{dP}{dQ}(X)$$

$$\alpha = \min\{1, \frac{dP}{dQ}(Y) \frac{dQ}{dP}(X)\}$$

if
$$P \approx Q$$
, $\alpha \approx 1$

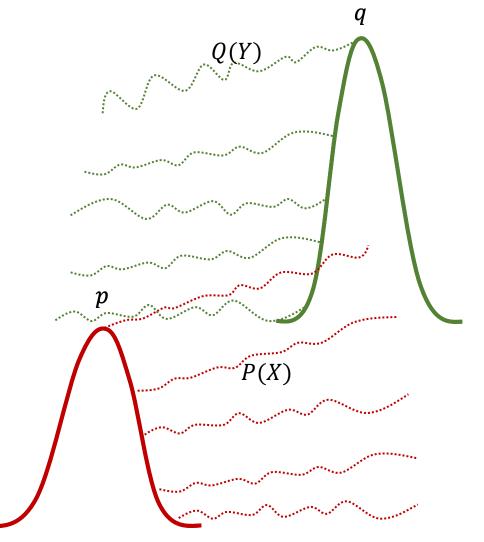


Path measure 1: P

Path measure 2: Q

"Unnormalised" RND:
$$w(X) = \frac{Z_p}{Z_q} \frac{dP}{dQ}(X)$$

$$\alpha = \min\{1, \frac{Z_p}{Z_q} \frac{dP}{dQ} (Y) \frac{Z_q}{Z_p} \frac{dQ}{dP} (X)\}$$



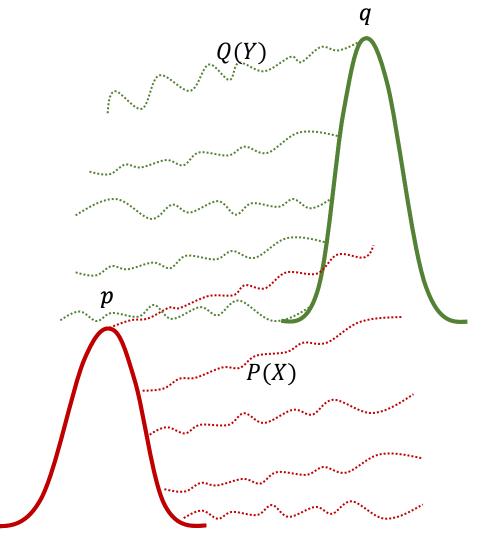
Path measure 1: P

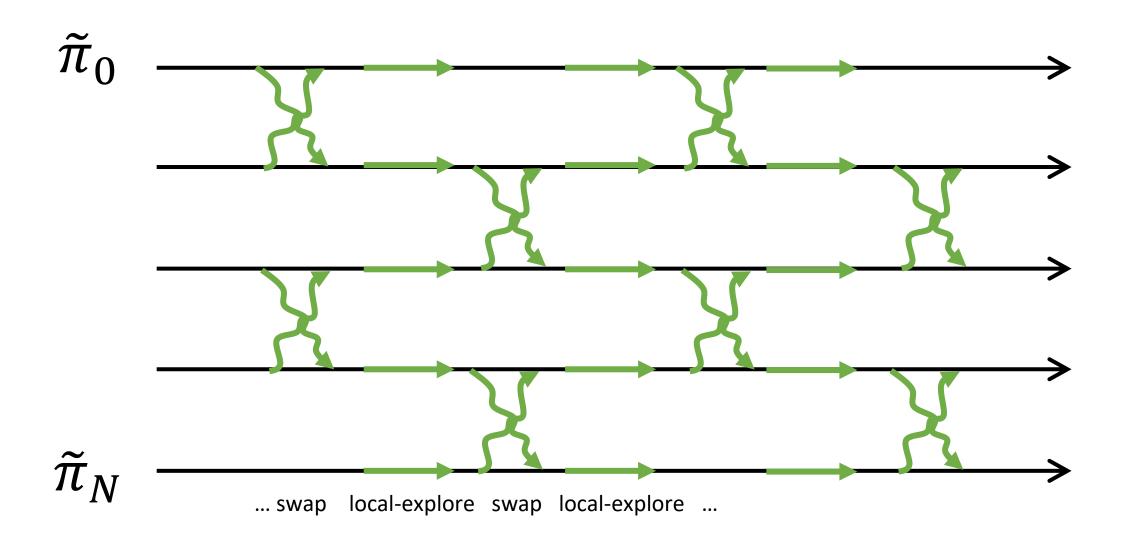
Path measure 2: Q

"Unnormalised" RND: $w(X) = \frac{Z_p}{Z_q} \frac{dP}{dQ}(X)$

How to realise the path?

CMCD Path / Diffusion Path / etc...





Accelerated Parallel tempering in Path Space For Diffusion Test-time Control

- Our setup so far:
 - Given unnormalised density, generated samples from it

- Diffusion test-time control:
 - Given a pretrained diffusion, steer distribution of generated samples

Accelerated Parallel tempering in Path Space For Diffusion Test-time Control

- Our setup so far:
 - Given unnormalised density, generated samples from it

- Diffusion test-time control:
 - Given a pretrained diffusion, steer distribution of generated samples

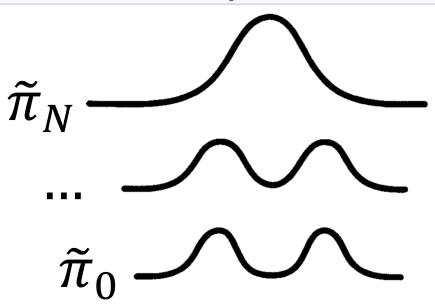
```
tempering: \pi_0(x) \propto p_0^j(x)^\beta with inverse-temperature \beta > 0; reward-tilting/posterior sampling: \pi_0(x) \propto p_0^j(x) \exp(r_0(x)) with reward/likelihood r_0(x); model composition: \pi_0(x) \propto \prod_j p_0^j(x) composing J diffusions p_0^j, j = 1, \cdots, J.
```

For Diffusion Test-time Control

tempering: $\pi_0(x) \propto p_0^j(x)^\beta$ with inverse-temperature $\beta > 0$;

reward-tilting/posterior sampling: $\pi_0(x) \propto p_0^j(x) \exp(r_0(x))$ with reward/likelihood $r_0(x)$;

model composition: $\pi_0(x) \propto \prod_j p_0^j(x)$ composing J diffusions $p_0^j, j = 1, \dots, J$.

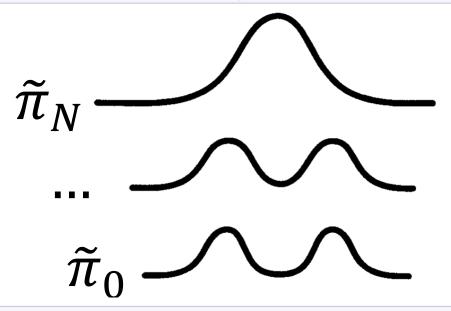


For Diffusion Test-time Control

tempering: $\pi_0(x) \propto p_0^j(x)^\beta$ with inverse-temperature $\beta > 0$;

reward-tilting/posterior sampling: $\pi_0(x) \propto p_0^j(x) \exp(r_0(x))$ with reward/likelihood $r_0(x)$;

model composition: $\pi_0(x) \propto \prod_j p_0^j(x)$ composing J diffusions $p_0^j, j = 1, \dots, J$.



tempering: $\pi_t(x) \propto p_t^j(x)^{\beta}$ with inverse-temperature $\beta > 0$;

reward-tilting/posterior sampling: $\pi_t(x) \propto p_t^j(x) \exp(r_t(x))$ with reward/likelihood $r_t(x)$;

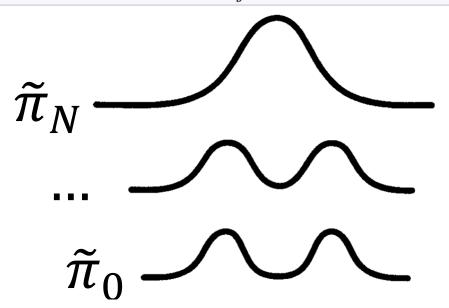
model composition: $\pi_t(x) \propto \prod_i p_t^j(x)$ composing J diffusions $p_t^j, j = 1, \dots, J$.

For Diffusion Test-time Control

tempering: $\pi_0(x) \propto p_0^j(x)^\beta$ with inverse-temperature $\beta > 0$;

reward-tilting/posterior sampling: $\pi_0(x) \propto p_0^j(x) \exp(r_0(x))$ with reward/likelihood $r_0(x)$;

model composition: $\pi_0(x) \propto \prod_j p_0^j(x)$ composing J diffusions $p_0^j, j = 1, \dots, J$.



tempering: π_t

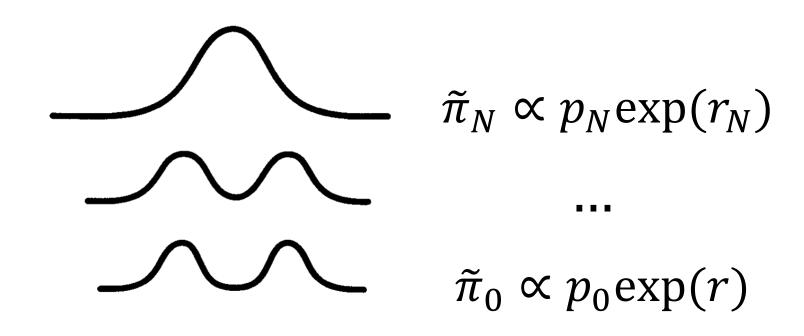
 $\pi_t(x) \propto p_t^j(x)^{\beta}$ with inverse-temperature $\beta > 0$;

In short, control the marginal of each denoising step using APT

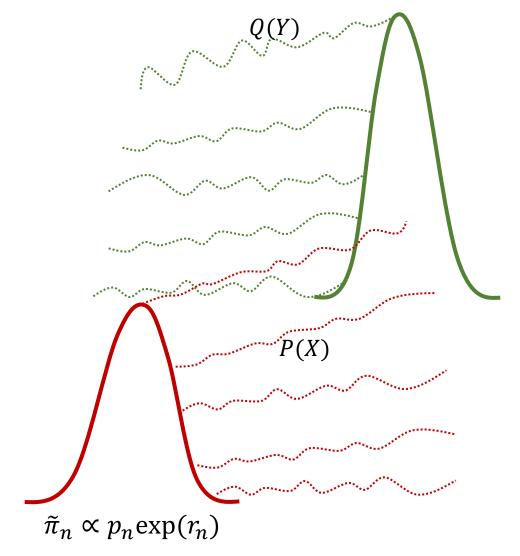
model composition:

For Diffusion Test-time Control (reward-tilting as example)

For Diffusion Test-time Control (reward-tilting as example)

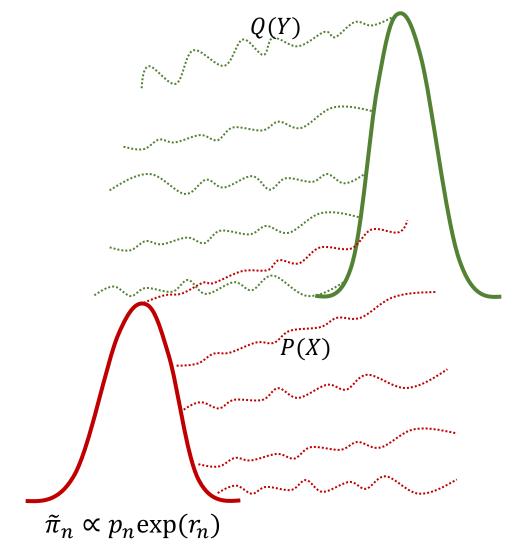


For Diffusion Test-time Control (reward-tilting as example) $\tilde{\pi}_{n+1} \propto p_{n+1} \exp(r_{n+1})$



For Diffusion Test-time Control (reward-tilting as example) $\tilde{\pi}_{n+1} \propto p_{n+1} \exp(r_{n+1})$

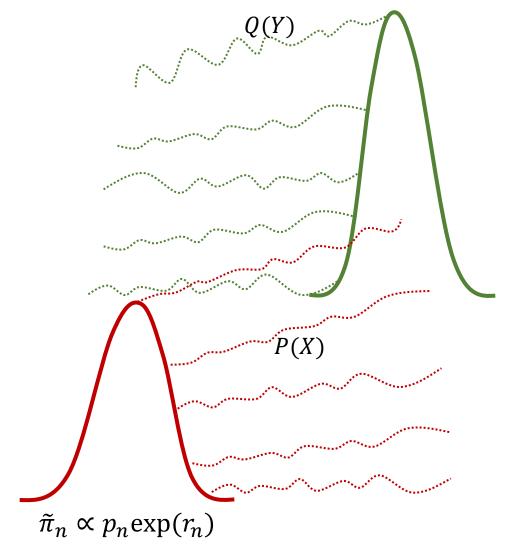
$$\alpha = \min\{1, \frac{\mathrm{d}P}{\mathrm{d}Q}(Y) \frac{\mathrm{d}Q}{\mathrm{d}P}(X)\}$$



For Diffusion Test-time Control (reward-tilting as example) $\tilde{\pi}_{n+1} \propto p_{n+1} \exp(r_{n+1})$

$$\alpha = \min\{1, \frac{dP}{dQ}(Y) \frac{dQ}{dP}(X)\}$$

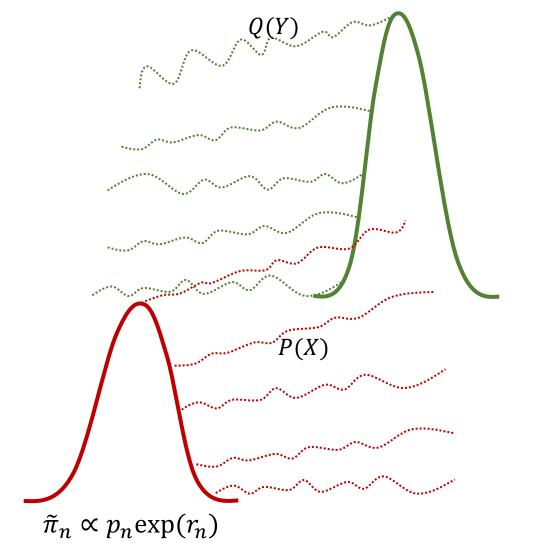
$$\frac{\mathrm{d}P}{\mathrm{d}Q} \propto \frac{\widetilde{\pi}_n(X_0)}{\widetilde{\pi}_{n+1}(X_1)} \lim \frac{\prod N_1(X_{k+1}|X_k)}{\prod N_2(X_k|X_{k+1})}$$



For Diffusion Test-time Control (reward-tilting as example) $\tilde{\pi}_{n+1} \propto p_{n+1} \exp(r_{n+1})$

$$\alpha = \min\{1, \frac{dP}{dQ}(Y) \frac{dQ}{dP}(X)\}$$

$$\frac{\mathrm{d}P}{\mathrm{d}Q} \propto \frac{\widetilde{\pi}_n(X_0)}{\widetilde{\pi}_{n+1}(X_1)} \frac{N_1(X_1|X_0)}{N_2(X_0|X_1)}$$



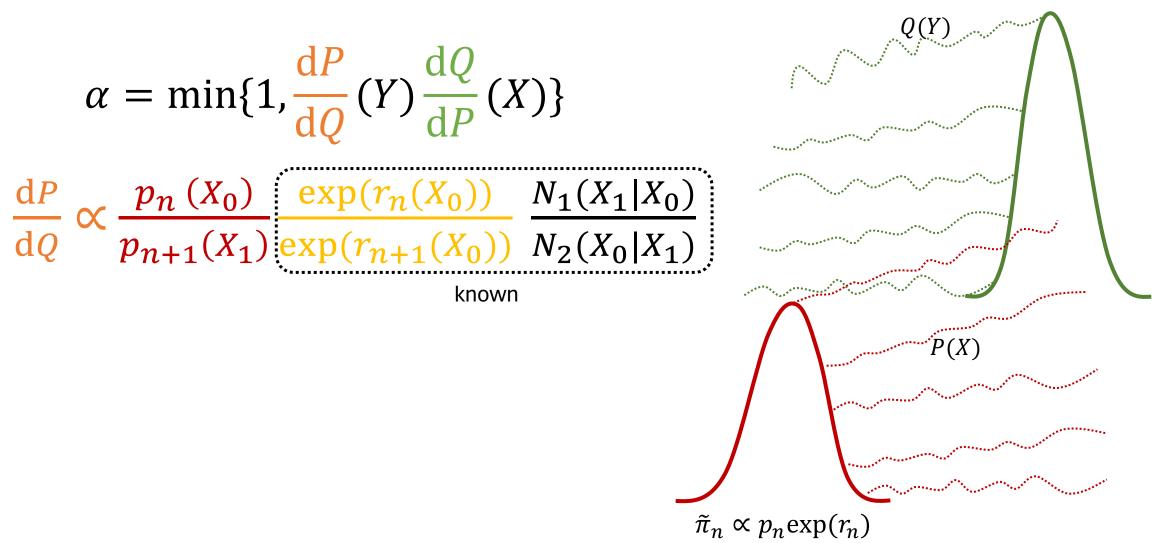
For Diffusion Test-time Control (reward-tilting as example) $\tilde{\pi}_{n+1} \propto p_{n+1} \exp(r_{n+1})$

$$\alpha = \min\{1, \frac{\mathrm{d}P}{\mathrm{d}Q}(Y) \frac{\mathrm{d}Q}{\mathrm{d}P}(X)\}$$

$$\frac{\mathrm{d}P}{\mathrm{d}Q} \propto \frac{p_n(X_0)}{p_{n+1}(X_1)} \frac{\exp(r_n(X_0))}{\exp(r_{n+1}(X_0))} \frac{N_1(X_1|X_0)}{N_2(X_0|X_1)}$$

 $\tilde{\pi}_n \propto p_n \exp(r_n)$

For Diffusion Test-time Control (reward-tilting as example) $\tilde{\pi}_{n+1} \propto p_{n+1} \exp(r_{n+1})$



For Diffusion Test-time Control (reward-tilting as example) $\tilde{\pi}_{n+1} \propto p_{n+1} \exp(r_{n+1})$

$$\alpha = \min\{1, \frac{\mathrm{d}P}{\mathrm{d}Q}(Y) \frac{\mathrm{d}Q}{\mathrm{d}P}(X)\}$$

$$\frac{\mathrm{d}P}{\mathrm{d}Q} \propto \frac{p_n(X_0)}{p_{n+1}(X_1)} \frac{\exp(r_n(X_0))}{\exp(r_{n+1}(X_0))} \frac{N_1(X_1|X_0)}{N_2(X_0|X_1)}$$

$$\lim_{\tilde{n}_n \propto p_n \exp(r_n)} \tilde{n}_n \propto p_n \exp(r_n)$$

$$\stackrel{\leftarrow}{P}$$
: $\mathrm{d} X_t = \mathrm{diffusion}$ denoising drift $\mathrm{d} t + \sigma_t \stackrel{\longleftarrow}{\mathrm{d} W_t} \qquad X_1 \sim p_{n+1}$
 P : $\mathrm{d} X_t = \mathrm{diffusion}$ noising drift $\mathrm{d} t + \sigma_t \mathrm{d} W_t \qquad X_0 \sim p_n$

$$\frac{p_n(X_0)}{p_{n+1}(X_1)} = ?$$

$$\stackrel{\leftarrow}{P}$$
: $dX_t =$ diffusion denoising drift $dt + \sigma_t \stackrel{\longleftarrow}{dW_t}$ $X_1 \sim p_{n+1}$ $Y_1 \sim p_{n+1}$ $Y_2 \sim p_n$ $Y_3 \sim p_n$ $Y_4 \sim p_n$

$$X_1 \sim p_{n+1}$$

$$X_0 \sim p_n$$

$$\frac{dP}{dP} = 1$$

$$\frac{p_n(X_0)}{p_{n+1}(X_1)} = ?$$

$$\stackrel{\leftarrow}{P}$$
: $dX_t =$ diffusion denoising drift $dt + \sigma_t \stackrel{\longleftarrow}{dW_t}$ $X_1 \sim p_{n+1}$ $Y_1 \sim p_n$ $Y_2 \sim p_n$ $Y_3 \sim p_n$ $Y_4 \sim p_n$

$$\frac{p_n(X_0)}{p_{n+1}(X_1)} \frac{N_{\text{noise}}(X_1|X_0)}{N_{\text{denoise}}(X_0|X_1)} \approx 1$$

$$\stackrel{\leftarrow}{P}$$
: $dX_t =$ diffusion denoising drift $dt + \sigma_t \overleftarrow{dW_t}$ $X_1 \sim p_{n+1}$ $Y_1 \sim p_n$ $Y_2 \sim p_n$ $Y_3 \sim p_n$ $Y_4 \sim p_n$

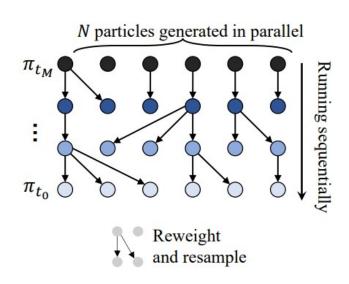
$$\frac{p_n(X_0)}{p_{n+1}(X_1)} \approx \frac{N_{\text{denoise}}(X_0|X_1)}{N_{\text{noise}}(X_1|X_0)}$$

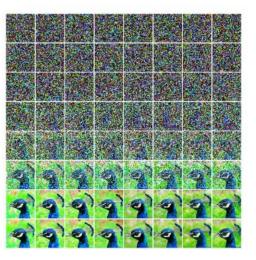
For Diffusion Test-time Control (reward-tilting as example) $\tilde{\pi}_{n+1} \propto p_{n+1} \exp(r_{n+1})$

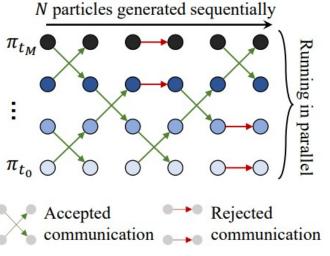
$$\alpha = \min\{1, \frac{\mathrm{d}P}{\mathrm{d}Q}(Y) \frac{\mathrm{d}Q}{\mathrm{d}P}(X)\}$$

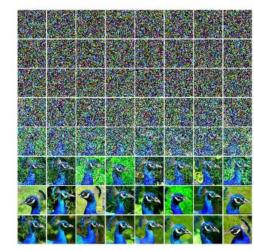
$$\frac{\mathrm{d}P}{\mathrm{d}Q} \propto \frac{p_n(X_0)}{p_{n+1}(X_1)} \frac{\exp(r_n(X_0))}{\exp(r_{n+1}(X_0))} \frac{N_1(X_1|X_0)}{N_2(X_0|X_1)}$$

$$\lim_{\tilde{\pi}_n \propto p_n \exp(r_n)} \tilde{\pi}_n \propto p_n \exp(r_n)$$









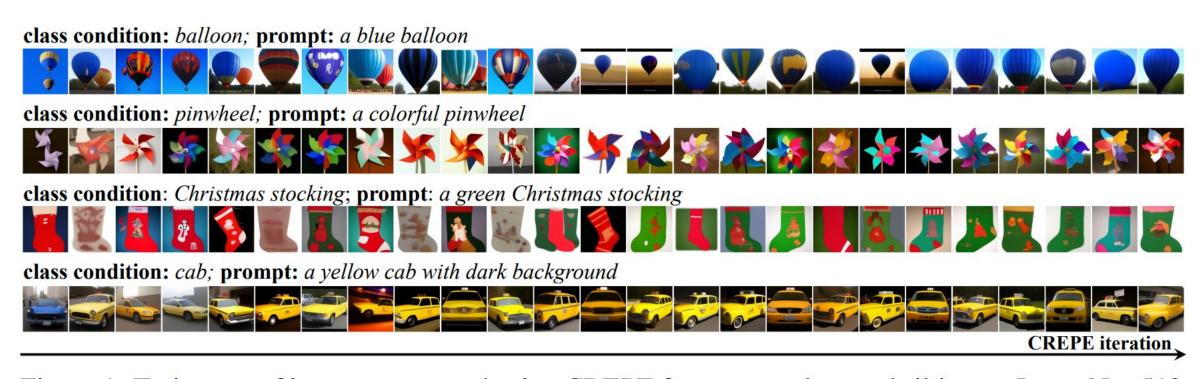


Figure 1: Trajectory of images generated using CREPE for prompted reward-tilting on ImageNet-512, thinned every 8 iterations. After burn-in, the samples align closely with the prompt.

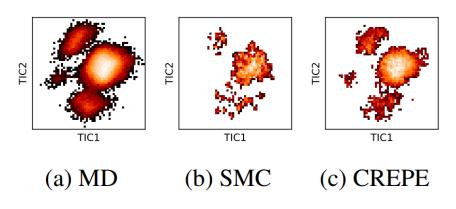
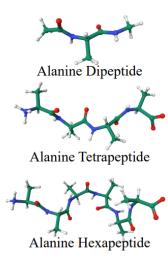
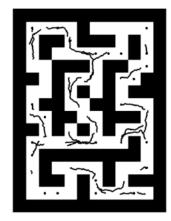


Figure 3: TICA of Alanine Hexapeptide annealed to 600K by SMC and CREPE. CREPE maintains more diversity.

Table 1: Inference-time tempering performance for Alanine Dipeptide, Tetrapeptide and Hexapeptide.



		FKC		RNE	CREPE
		Anneal Score	Anneal Noise	KI (L	(Ours)
ALA Dipeptide (800K → 300K)	Energy TVD	0.345 ± 0.010	0.894 ± 0.002	0.391 ± 0.006	0.224 ± 0.005
	Distance TVD	$0.023\pm{\scriptstyle 0.001}$	0.036 ± 0.001	$0.024\pm{\scriptstyle 0.001}$	0.019 ± 0.000
	Sample W2	0.293 ± 0.001	0.282 ± 0.001	0.282 ± 0.001	0.264 ± 0.001
	TICA MMD	$\textbf{0.116} \pm 0.003$	$\textbf{0.108}\pm 0.004$	$0.168\pm \textbf{0.007}$	0.096 ± 0.014
ALA Tetrapeptide (800K → 500K)	Energy TVD	0.122 ± 0.012	0.436 ± 0.007	0.154 ± 0.006	0.122 ± 0.004
	Distance TVD	0.014 ± 0.000	0.015 ± 0.000	0.013 ± 0.001	0.013 ± 0.001
	Sample W2	0.923 ± 0.008	0.892 ± 0.001	0.893 ± 0.005	0.856 ± 0.004
	TICA MMD	$0.183 \pm \textbf{0.020}$	$0.138\pm{\scriptstyle 0.017}$	0.155 ± 0.009	0.035 ± 0.002
ALA Hexapeptide (800K → 600K)	Energy TVD	0.091 ± 0.006	0.206 ± 0.005	0.087 ± 0.003	0.398 ± 0.001
	Distance TVD	0.018 ± 0.000	0.020 ± 0.001	0.010 ± 0.001	0.009 ± 0.001
	Sample W2	$1.585\pm{\scriptstyle 0.001}$	1.652 ± 0.012	1.618 ± 0.001	1.299 ± 0.004
	TICA MMD	$\textbf{0.088}\pm 0.004$	$\textbf{0.068}\pm\textbf{0.010}$	$0.042\pm{\scriptstyle 0.004}$	0.009 ± 0.001



Example of training trajectories.

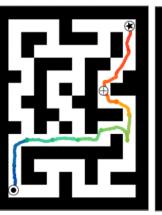
Trajectory after 1 PT iteration.

Trajectory after 10k PT iterations.

PT iterations.



Trajectory after 50k Trajectory after 100k PT iterations.



PT iteration.

Trajectory after 101k Trajectory after 150k PT iterations.

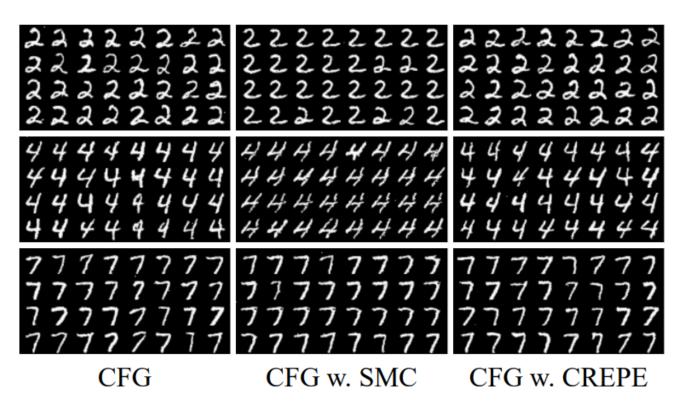


Figure 7: MNIST samples generated by CFG, and debiased by SMC and CREPE.

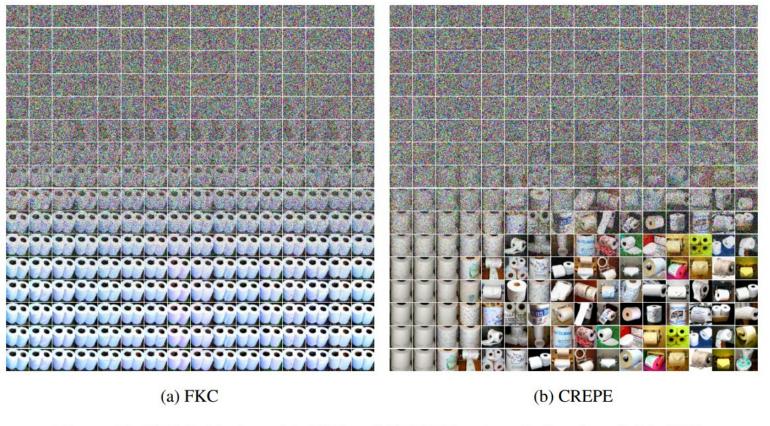


Figure 11: CFG Debiasing with FKC and CREPE for class "toilet tissue" (idx 999).

From Density Ratio to Path RND

Unnormalised density 1: \tilde{p}

Unnormalised density 2: \tilde{q}

Density ratio: $w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$

Path measure 1: P

Path measure 2: Q

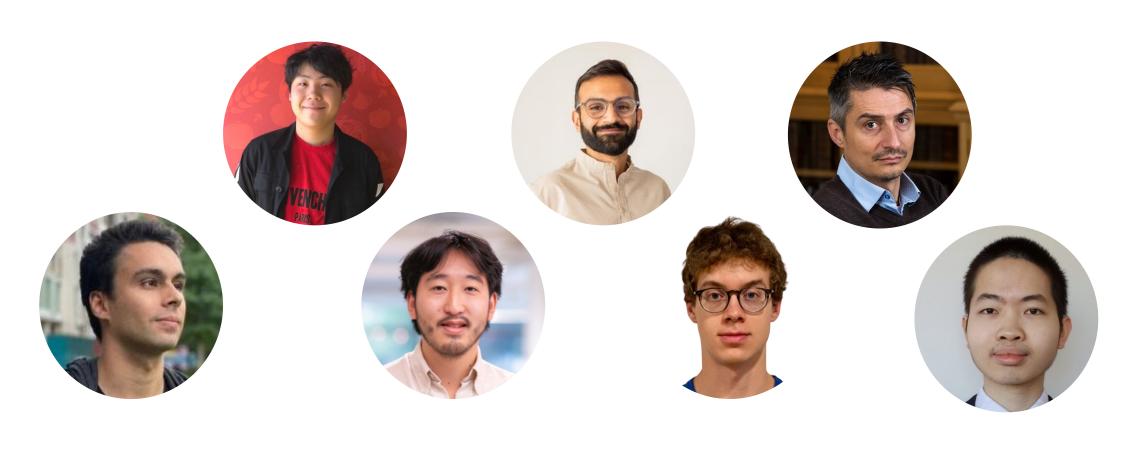
"Unnormalised" RND:
$$w(X) = \frac{Z_p}{Z_q} \frac{dP}{dQ}(X)$$

- Importance sampling: $w(x) = \frac{\tilde{p}(x)}{\tilde{q}(x)}$
- FEP: $\Delta F = -\log(\int q(x)w(x) dx)$
- PT Swap: $\alpha = \min\{1, \frac{w(y)}{w(x)}\}$

- Path Importance sampling: w(X)
- Path FEP: $\Delta F = -\log(\int dQ(X)w(X))$
- Path PT Swap: $\alpha = \min\{1, \frac{w(Y)}{w(X)}\}$

Collaborators (random order): Free-energy estimator with adaptive transport

Collaborators (random order): Accelerated parallel tempering



Collaborators (random order): Controlling diffusion with Replica Exchange

