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Parallel tempering T —/L

* An MCMC algorithm for target density 7,

« Workflow: ﬁ'N M

* Choose an easy-to-sample reference 7,
* Design multiple intermediate targets 7,
* Design two MCMC kernels with invariant measure as ity X 74 X -+ X iy

1. Local exploration kernel: independent MCMC for each 7,
2. Communication kernel: swap between all adjacent pairs (T,,, T;;41)
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Wrap up

Unnormalised density 1: p
Unnormalised density 2: g

Density ratio: = 25

ensity ratio: w(x) =

+ Import ling: w(x) = 22
mportance sampling: w(x) s

* FEP: AF = —log([ q(x)w(x) dx)
* PT Swap: a = min{1l,—}
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From Density Ratio to Path RND

Unnormalised density 1: p Path measure 1: P

Unnormalised density 2: g Path measure 2: )

Density ratio: w(x) = 46D “Density” ratio: b (x)
q(x) dQ
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P: dX; = f(X;, t)dt + o, dW, Xy ~ Do =D
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Forward-forward RND (FF-RND) and Girsanov

Unnormalised density?

P: dX; = f(X¢, t)dt + 0, dW;,, Xy ~ Do =D
Q: dX; = g(X;, t)dt + o, dWy, Xy ~ Go = §
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Forward-backward RND (FB-RND)
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Forward-backward RND (FB-RND)

P: dX; = f(X, t)dt + 0,dWy, Xo ~ Do = P
Q: dX, = g(X;, )dt + 0, dW,, X1 ~ G, = §
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A Side Note on Stochastic Intergrals

Ito forward integral

[ a0 dxe =tim ) an() - (e = Xo)

Ito backward integral

f a.(X;) (d_Xt = limz: An+1(Xnt1) - X1 — Xn)

Conversion rule:

Jat(Xt) * dXt - J at(Xt) * (d_)(t — —JO'tzV * atdt
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Unnormalised density 1: p Path measure 1: P

Unnormalised density 2: g Path measure 2: ()

Density ratio: w(x) = % “Unnormalised” RND: w(X) = i—z(;—g (X)
Px)

* Importance sampling: w(x) = G(x)

* FEP: AF = —log([ q(x)w(x) dx)
* PT Swap: a = min{1l,—}



From Density Ratio to Path RND

Unnormalised density 1: p Path measure 1: P
Unnormalised density 2: g Path measure 2: ()
. . . _ @ ¢ T ”» . —_ Z_pd_P
Density ratio: w(x) = e Unnormalised” RND: w(X) Z 40 (X)
 Importance sampling: w(x) = G Path Importance sampling: w(X)

q(x)
« FEP: AF = —log([ q(x)w(x)dx) ° PathFEP:AF = —log(J dQ(X)w (X))

* PT Swap: @ = min{1,—=} * Path PT Swap: @« = min{1,—}
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= data processing inequality (DPI) told us

From Density Ratio to Path RND

Wait.. WHY PATH?/

%@ Drlqllpl = Df[Q]|P

Path weight always has larger variance?
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From Density Ratio to Path RND

Path weight always has larger variance?
. Not for FB RND!

If 5 = P (time-reversal)
The path weight will have 0 variance




Time-reversal and Nelson’s relation

P: dX, = f(X., t)dt + o, dW,, X, ~ Py
Q : dX; = g(X, t)dt + o, dW;, X1 ~ p4
do
N , @=Pie =
time-reversal dp

ff

g, t) =f(,t) —afVlog p:(-)



From Density Ratio to Path RND

Path measure 1: P
Path measure 2: ()

Zp dP

“Unnormalised” RND: w(X) = 7. a0
q

(X)

 Path Importance sampling: w(X)
* Path FEP: AF = —log([ dQ(X)w(X))

* Path PT Swap: ¢ = min{1,—}



From Density Ratio to Path RND

“Unnormalised” RND: w(X) =

e Pat
e Pat

* Pat

Path measure 1: P
Path measure 2: ()

Z, dP
7o 40 (X)
n Importance sampling: w(X)

h FEP: AF = —log(J dQ(X)w(X))

n PT Swap: ¢ = min{1l,—}

(escorted) Jarzynski/Crooks

Replica exchange with nonequilibrium
switches [1] / Accelerated PT [2]

[1] Ballard, Andrew J., and Christopher Jarzynski. "Replica exchange with nonequilibrium switches." Proceedings of the National Academy of Sciences 106.30 (2009): 12224-12229.
[2] Zhang, Leo, et al. "Accelerated Parallel Tempering via Neural Transports." arXiv preprint arXiv:2502.10328 (2025).



From Density Ratio to Path RND

Equilibrium method and

Path measure 1: P o
Path 5. nonequilibrium ones are
i (s not too different:

One use Marginal space RND

“ . ” . — Zp dP
Unnormalised” RND: w(X) = Z—qE(X) One use Path space RND

 Path Importance sampling: w(X)
* Path FEP: AF = —log([ dQ(X)w(X)) (escorted) Jarzynski/Crooks
e Path PT Swap: a = min{l,—} Replica exchange with nonequilibrium

switches [1] / Accelerated PT [2]

[1] Ballard, Andrew J., and Christopher Jarzynski. "Replica exchange with nonequilibrium switches." Proceedings of the National Academy of Sciences 106.30 (2009): 12224-12229.
[2] Zhang, Leo, et al. "Accelerated Parallel Tempering via Neural Transports." arXiv preprint arXiv:2502.10328 (2025).
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Example: Path RND to Jarzynski Equality

Xo~q dX, = —o2VU,(X,)dt + o2 dW,,

X1~p dX, = 02VU,(X,)dt + oV2 dW,,
dp _ p(Xy1)

exp

YO ax, +2 ot VU dt+fVUt dXx, ot VU, |2dt
dQ_ CI(X()) 2 t | tl t 4 t

VUt VU, ——
Xt f_ dXt

X ¢ conversion rule
_ ) exp (J VU, - dX, +fat2AUtdt)

P(X1)
CI(XO)

q(Xo)
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Example: Path RND to Jarzynski Equality

Xo~q dX, = —o2VU,(X,)dt + o2 dW,,

X1~p dX, = 02VU,(X,)dt + oV2 dW,,
dp — Z_exp f—atUt(Xt)dt . Crooks Fluctuation Theorem
dQ A

E}ﬁ
QdQ

= Eq [_ exp (f atUt(Xt)dt)] 1 . Jarzynski Equation



From Jarzynski to Escorted Jarzynski

Xo~q dX, = [-02VU,(X,) + u,(X,)]dt + V2 dW,
Xi~p  dX, = [02VU,(X,) + u,(X,)]dt + ov/2 dW,

dP 7,
dQ — Zl eXp f_atUt(Xt)dt_VUt utdt-l-Vutdt
. Controlled Crooks Fluctuation Theorem
Z
0

. Escorted Jarzynski Equation



From Jarzynski to Escorted Jarzynski

Xo~q dX, = [-02VU,(X,) + u,(X,)]dt + V2 dW,
Xi~p  dX, = [02VU,(X,) + u,(X,)]dt + ov/2 dW,

Pz
dQ — Z(l) eXp (f_atUt(Xt)dt - VUt * utdt + V * utdt>

. Controlled Crooks Fluctuation Theorem

YA
EQ [exp <f_atUt(Xt)dt — VUt * utdt + V * utdt>] — Z_l
0
. Escorted Jarzynski Equation

Can also be derived via PDEs [1] / Feynman-Kac formula [2]:
[1] Albergo, M. S., & Vanden-Eijnden, E (2025). NETS: A Non-equilibrium Transport Sampler. ICML 2025.
[2] Skreta, M., Akhound-Sadegh, T., Ohanesian, V., Bondesan, R., Aspuru-Guzik, A., Doucet, A., ... & Neklyudov, K. (2025).
Feynman-kac correctors in diffusion: Annealing, guidance, and product of experts. ICML 2025.



From Density Ratio to Path RND

Equilibrium method and

Path measure 1: P o
Path 5. nonequilibrium ones are
i (s not too different:

One use Marginal space RND

“ . ” . — Zp dP
Unnormalised” RND: w(X) = Z—qE(X) One use Path space RND

¢ Path Importance sampling: w(X)
¢ Path FEP: AF = —log([ dQ(X)w(X)) (escorted) Jarzynski/Crooks
e Path PT Swap: a = min{l,—} Replica exchange with nonequilibrium

switches [1] / Accelerated PT [2]

[1] Ballard, Andrew J., and Christopher Jarzynski. "Replica exchange with nonequilibrium switches." Proceedings of the National Academy of Sciences 106.30 (2009): 12224-12229.
[2] Zhang, Leo, et al. "Accelerated Parallel Tempering via Neural Transports." arXiv preprint arXiv:2502.10328 (2025).



From Density Ratio to Path RND

Equilibrium method and

Path measure 1: P o
Path 5. nonequilibrium ones are
i EEBITEE not too different:

One use Marginal space RND

“ . ” . — Zp dP
Unnormalised” RND: w(X) = 7 a0 (X) | One use Path space RND

¢ Path Importance sampling: w(X)
¢ Path FEP: AF = —log([ dQ(X)w(X)) (escorted) Jarzynski/Crooks
| e Path PT Swap: a = min{l,—} Replica exchange with nonequilibriumx

.
-
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

[1] Ballard, Andrew J., and Christopher Jarzynski. "Replica exchange with nonequilibrium switches." Proceedings of the National Academy of Sciences 106.30 (2009): 12224-12229.
[2] Zhang, Leo, et al. "Accelerated Parallel Tempering via Neural Transports." arXiv preprint arXiv:2502.10328 (2025).



Parallel tempering T —/L

* An MCMC algorithm for target density 7,

« Workflow: ﬁ'N M

* Choose an easy-to-sample reference 7,
* Design multiple intermediate targets 7,
* Design two MCMC kernels with invariant measure as ity X 74 X -+ X iy

1. Local exploration kernel: independent MCMC for each 7,
2. Communication kernel: swap between all adjacent pairs (T,,, T;;41)



Parallel tempering T —/L

* An MCMC algorithm for target density 7,

* Workflow: ﬁ'N M

* Choose an easy-to-sample reference 7,
* Design multiple intermediate targets 7,
* Design two MCMC kernels with invariant measure as ity X 74 X -+ X iy

1. Local exploration kernel: independent MCMC for each 7,

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
C

.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Extend to path!



Parallel tempering Swap in Path Space

Path measure 1: P
Path measure 2: ()

22 (X)

Zg dQ j
p

(1) Current state (x,y) ~ p(x) X q(y)

“Unnormalised” RND: w(X) =




Parallel tempering Swap in Path Space

Path measure 1: P
Path measure 2: ()

Zp dP

“Unnormalised” RND: w(X) = W
q

(X)

(2) Extend current states with path
(X,Y) ~ P(X) x Q(Y)




Parallel tempering Swap in Path Space

Path measure 1: P o
Path measure 2: () e

...........

e,
.= . N
T taunr .

_______

Zp dP

“Unnormalised” RND: w(X) = W
q

(X)

(3) Swap the Paths
(X, Y") « (Y,X)

*Note that this proposal function is still involution



Parallel tempering Swap in Path Space

Path measure 1: P
Path measure 2: ()

Zp dp.

“Unnormalised” RND: w(X) = -
q

(X)

(4) Calculate MH correction
dP(X') x Q"

d P(X) x Q(Y)

a = min{1




Parallel tempering Swap in Path Space

Path measure 1: P
Path measure 2: ()

“Unnormalised” RND: w(X) =

(4) Calculate MH correction
dP(Y) X Q(X)

"d P(X) xQ(Y)

a = min{1,




Parallel tempering Swap in Path Space

Path measure 1: P
Path measure 2: ()
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(4) Calculate MH correction
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Parallel tempering Swap in Path Space

Path measure 1: P
Path measure 2: ()
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(4) Calculate MH correction
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Parallel tempering Swap in Path Space

Path measure 1: P
Path measure 2: ()

Zp dp.

“Unnormalised” RND: w(X) = -
q

(X)

(4) Calculate MH correction

a = min{1, (Y) (X)}

I Pz~
if P = Q,C( ~ 1 J/Fc



Parallel tempering Swap in Path Space

q
Q)
Path measure 1: P po T
Path measure 2: () e
: Zp dP
“Unnormalised” RND: w(X) = z_pﬁ (X)
q

(4) Calculate MH correction

Z Z
a = min{1, =~ -
Zq Zp




Parallel tempering Swap in Path Space

Path measure 1: P o
Path measure 2: () e

e
"""
-----------

T
. -
. .
PUL T O as

_______

Zp dP

“Unnormalised” RND: w(X) = W
q

(X)

How to realise the path?
CMCD Path / Diffusion Path / etc...




Accelerated Parallel tempering in Path Space

>

TN — >

...swap local-explore swap local-explore ...




Accelerated Parallel tempering in Path Space

For Diffusion Test-time Control

* Our setup so far:
* Given unnormalised density, generated samples from it

* Diffusion test-time control:
* Given a pretrained diffusion, steer distribution of generated samples



Accelerated Parallel tempering in Path Space

For Diffusion Test-time Control

* Our setup so far:
* Given unnormalised density, generated samples from it

* Diffusion test-time control:
* Given a pretrained diffusion, steer distribution of generated samples

tempering: mo # with inverse-temperature 3 > 0;
p g 1Y

8

) o py(x
reward-tilting/posterior sampling: 7 (z) o p? (z) exp(ro(z)) with reward/likelihood ¢ (z):
o 11,

model composition: mo(z) P} () composing J diffusions p?, j = 1,--- , J.



Accelerated Parallel tempering in Path Space

For Diffusion Test-time Control
tempering: mo(x) ]:)‘8(:17)’6 with inverse-temperature 3 > 0;
reward-tilting/posterior sampling: 7 (z) o p? (z) exp(ro(z)) with reward/likelihood ¢ (z):

model composition: mo(z) oc I ph () composing J diffusions p?, j = 1,- -, J.



Accelerated Parallel tempering in Path Space

For Diffusion Test-time Control
tempering: mo(x) ]:)‘8(:17)’6 with inverse-temperature 3 > 0;
reward-tilting/posterior sampling: 7 (z) o p? (z) exp(ro(z)) with reward/likelihood ¢ (z):

model composition: mo(z) oc I ph () composing J diffusions p?, j = 1,- -, J.

/(x)” with inverse-temperature 3 > 0;

/() exp(r (x)) with reward/likelihood 74 (z:);
j

tempering: () o p]
reward-tilting/posterior sampling: 7;(z) o p’
11;

e
model composition: m¢(x) o< ] p; (x) composing J diffusions pli=1--,J.



Accelerated Parallel tempering in Path Space

For Diffusion Test-time Control
tempering: mo(x) p‘g(m)’6 with inverse-temperature 3 > 0;
reward-tilting/posterior sampling: 7 (z) o p? (z) exp(ro(z)) with reward/likelihood ¢ (z):

model composition: mo(z) oc I ph () composing J diffusions p?, j = 1,- -, J.

In short, control the marginal of each denoising step using APT



Accelerated Parallel tempering in Path Space

For Diffusion Test-time Control (reward-tilting as example)



Accelerated Parallel tempering in Path Space

For Diffusion Test-time Control (reward-tilting as example)

—/L iy X pyexp(ry)
NS\ -
Ty X poexp(r)



Accelerated Parallel tempering in Path Space

For Diffusion Test-time Control (reward-tilting as example) .1 % ppi1exp(rn41)

T X ppexp(ry,)



Accelerated Parallel tempering in Path Space

For Diffusion Test-time Control (reward-tilting as example) .1 % ppi1exp(rn41)

a = min{1, (X)}

T X ppexp(ry,)



Accelerated Parallel tempering in Path Space

For Diffusion Test-time Control (reward-tilting as example) .1 % ppi1exp(rn41)

a =min{l,— (Y)—(X)}

Tin (Xo) lim . IN1 (Xk4+1|Xk)
Tin+1(X1) [IN2 (Xk|Xk+1)

T X ppexp(ry,)



Accelerated Parallel tempering in Path Space

For Diffusion Test-time Control (reward-tilting as example) .1 % ppi1exp(rn41)

a =min{l,— (Y)—(X)}

Ty (Xo) N1(X1|Xo)
Tin+1(X1) Na2(XolX1)

T X ppexp(ry,)



Accelerated Parallel tempering in Path Space

For Diffusion Test-time Control (reward-tilting as example) .1 % ppi1exp(rn41)

a = min{1,

pn (Xo)
Pn+1(X1)

(Y) 5 (X)}

N1 (X11Xo)

T
. vus

. .
PUL T O .

.......

-----
-----
..........
;;;;
.....

.....

N3 (Xo|X71)

------

e
. .
.............

......

T X ppexp(ry,)




Accelerated Parallel tempering in Path Space

For Diffusion Test-time Control (reward-tilting as example) .1 % ppi1exp(rn41)

T X ppexp(ry,)



Accelerated Parallel tempering in Path Space

For Diffusion Test-time Control (reward-tilting as example) .1 % ppi1exp(rn41)

-------------------------
*

--------------------------

unknown

T X ppexp(ry,)



Accelerated Parallel tempering in Path Space

For Diffusion Test-time Control (reward-tilting as example)

P: dX; = diffusion denoising drift dt + o;dW; X; ~ 05,41
P: dX; = diffusion noising drift dt + o, dW; X~ Py

Pn (Xo) —_ 2
Pn+1(X1) )




Accelerated Parallel tempering in Path Space

For Diffusion Test-time Control (reward-tilting as example)

p: dX; = diffusion denoising drift dt + at(d—Wt X1 ~ Dn+q ‘Cﬁ
P: dX, = ditfusion noising drift dt + o, dW; Xo~ Pn 4ap =1
pn (Xo) _ o

Pn+1(X1) -



Accelerated Parallel tempering in Path Space

For Diffusion Test-time Control (reward-tilting as example)

p: dX; = diffusion denoising drift dt + o, dW, X; ~ pn41 ‘Cﬁ
P: dX, = ditfusion noising drift dt + o, dW; Xo~ Pn 4ap =1

Pn (Xo) Nnoise(X11Xo) ~
Pn+1(X1) Ndenoise(Xo|X1)




Accelerated Parallel tempering in Path Space

For Diffusion Test-time Control (reward-tilting as example)

p: dX; = diffusion denoising drift dt + o, dW, X; ~ pn41 ‘Cﬁ
P: dX, = ditfusion noising drift dt + o, dW; Xo~ Pn 4ap =1

Pn (Xo) . Ndenoise(Xo|X1)
Pn+1(X1) Nnoise(X1|Xo)




Accelerated Parallel tempering in Path Space

For Diffusion Test-time Control (reward-tilting as example) .1 % ppi1exp(rn41)

-------------------------
*

--------------------------

unknown

T X ppexp(ry,)



CREPE:
Controlling Diffusion with Replica Exchange

N particles generated in parallel N particles generated sequentlally
=a e >
g ]
3 .
= =
@ =3
& ® ® | g
a
= £,
O O OyE =
3

« Accepted % Rejected
4 communication . communication

l\. Reweight
and resample




CREPE:
Controlling Diffusion with Replica Exchange

class condition: balloon, prompt: a blue balloon

HaVVS.PVEOLVOLLAVECAUASSODS

class condition: pinwheel; prompt: a colorful pinwheel

< AL S A S T e

class condition: Christmas stocking; prompt: a green Christmas stocking

MRS RN NASRR AT PR IIR

class condition: cab,; prompt: a yellow cab with dark background
B e ek

H“ﬁ-ﬁlﬂ“ -~ —— e =T g

CREPE lteratlon

Figure 1: Trajectory of images generated using CREPE for prompted reward-tilting on ImageNet-512,
thinned every 8 iterations. After burn-in, the samples align closely with the prompt.




CREPE:

Controlling Diffusion with Replica Exchange

TIC2
vim-
=,
TIC2

TIC2

S
bt
l-l"

TIC1 TIC1 TIC1

(a) MD (b) SMC (c) CREPE

Figure 3: TICA of Alanine Hexapeptide

annealed to 600K by SMC and CREPE.

CREPE maintains more diversity.

Table 1: Inference-time tempering performance for Alanine Dipeptide, Tetrapeptide and Hexapeptide.

Alanine Dipeptide

Alanine Tetrapeptide

Alanine Hexapeptide

oo
Anneal Score  Anneal Noise ’
Energy TVD 0.345 + o010 0.894 0.391 +o006  0.224 + 0005
ALA Dipeptide Distance TVD  0.023 + o0 0.036 0.024 ~oon 0019 — .00
(800K — 300K) Sample W2 0.293 L om 0.282 0.282 0.264 - oo
TICA MMD 0.116 +oms 0.108 0.168 - 0.096 - 001
E.HBI’gy TVD 0.122 +0.012 0436 0154 0.006 0122 0.004
ALA Tetrapeptide Distance TVD  0.014 + oo 0.015 0.013 ~oon 0.013 =00
(800K — 500K) Sample W2 0.923 8 0.892 0.893 0.856 - 0.00
TICA MMD 0.183 0.138 0.155 0.035
Energy TVD 0.091 + 000 0.206 0.087 - o003 0398 0.01
ALA Hexapeptide Distance TVD  0.018 + o000 0.020 0.010 — o001 0.009 - 0.«
(800K — 600K) Sample W2 1.585 + om0 1.652 1.618 —¢ 1.299 - o0
TICA MMD 0.088 + 0w 0.068 0.042 0.009 - o0




CREPE:
Controlling Diffusion with Replica Exchange

Example of training Trajectory after | PT Trajectory after 10k  Trajectory after 50k Trajectory after 100k Trajectory after 101k Trajectory after 150k
trajectories. iteration. PT iterations. PT iterations. PT iterations. PT iteration. PT iterations.



CREPE

Exchange

ICa

ith Repl

1on wi

Controlling Diffus

CFG w. CREPE

CFG w. SMC

CFG
Figure 7: MNIST samples generated by CFG, and

debiased by SMC and CREPE.



CREPE:
Controlllng Diffusion with Repllca Exchange

(a) FKC (b) CREPE

Figure 11: CFG Debiasing with FKC and CREPE for class “toilet tissue” (idx 999).



From Density Ratio to Path RND

Unnormalised density 1: p Path measure 1: P
Unnormalised density 2: g Path measure 2: ()
. . . _ @ ¢ T ”» . —_ Z_pd_P
Density ratio: w(x) = e Unnormalised” RND: w(X) Z 40 (X)
 Importance sampling: w(x) = LG Path Importance sampling: w(X)

q(x)
« FEP: AF = —log([ q(x)w(x)dx) ° PathFEP:AF = —log(J dQ(X)w (X))

* PT Swap: @ = min{1,—=)} * Path PT Swap: @« = min{1,—}




Collaborators (random order):
Free-energy estimator with adaptive transport




Collaborators (random order):
Accelerated parallel tempering




Collaborators (random order):
Controlling diffusion with Replica Exchange
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