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• Design two MCMC kernels with invariant measure as ෤𝜋0 × ෤𝜋1 × ⋯ × ෤𝜋𝑁
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• Importance sampling: 𝑤 𝑥 =
෤𝑝(𝑥)
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• FEP: Δ𝐹 = − log(׬ 𝑞 𝑥 𝑤(𝑥) d𝑥)
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From Density Ratio to Path RND

Unnormalised density 1: ෤𝑝
Unnormalised density 2: ෤𝑞

Density ratio:  𝑤 𝑥 =
෤𝑝(𝑥)

෤𝑞(𝑥)

Path measure 1: 𝑃
Path measure 2: 𝑄

“Density” ratio:  d𝑃 

d𝑄
𝑥



Forward-forward RND (FF-RND) and Girsanov

𝑃 ∶  d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋0 ∼ 𝑝0 = 𝑝
𝑄 ∶  d𝑋𝑡 = 𝑔 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋0 ∼ 𝑞0 = 𝑞
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𝑄(𝑋)

𝑝Initial density ratio
Transition kernel ratio



Forward-forward RND (FF-RND) and Girsanov

𝑃 ∶  d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋0 ∼ 𝑝0 = 𝑝
𝑄 ∶  d𝑋𝑡 = 𝑔 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋0 ∼ 𝑞0 = 𝑞

d𝑃

d𝑄
𝑋 = lim

𝑝 𝑋0 ∏𝑁1(𝑋𝑛+1|𝑋𝑛)

𝑞 𝑋0 ∏𝑁2(𝑋𝑛+1|𝑋𝑛)

𝑃(𝑋)

𝑞

𝑄(𝑋)

𝑝Initial density ratio
Transition kernel ratio

=
𝑝 𝑋0

𝑞 𝑋0
exp න

𝑓𝑡(𝑋𝑡)

𝜎𝑡
2 ⋅ d𝑋𝑡 −

𝑓𝑡
2 𝑋𝑡

2𝜎𝑡
2 d𝑡 − න

𝑔𝑡 𝑋𝑡

𝜎𝑡
2 ⋅ d𝑋𝑡 +

𝑔𝑡
2(𝑋𝑡)

2𝜎𝑡
2 d𝑡

Forward Ito Integralන 𝑎𝑡(𝑋𝑡) ⋅ d𝑋𝑡 = lim ෍ 𝑎𝑛 𝑋𝑛 ⋅ (𝑋𝑛+1 − 𝑋𝑛)



Forward-forward RND (FF-RND) and Girsanov

𝑃 ∶  d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋0 ∼ 𝑝0 = 𝑝
𝑄 ∶  d𝑋𝑡 = 𝑔 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋0 ∼ 𝑞0 = 𝑞

d𝑃

d𝑄
𝑋 = lim

𝑝 𝑋0 ∏𝑁1(𝑋𝑛+1|𝑋𝑛)

𝑞 𝑋0 ∏𝑁2(𝑋𝑛+1|𝑋𝑛)

𝑃(𝑋)

𝑞

𝑄(𝑋)

𝑝Initial density ratio
Transition kernel ratio

=
𝑝 𝑋0

𝑞 𝑋0
exp න

𝑓𝑡(𝑋𝑡)

𝜎𝑡
2 ⋅ d𝑋𝑡 −

𝑓𝑡
2 𝑋𝑡

2𝜎𝑡
2 d𝑡 − න

𝑔𝑡 𝑋𝑡

𝜎𝑡
2 ⋅ d𝑋𝑡 +

𝑔𝑡
2(𝑋𝑡)

2𝜎𝑡
2 d𝑡

Forward Ito Integralන 𝑎𝑡(𝑋𝑡) ⋅ d𝑋𝑡 = lim ෍ 𝑎𝑛 𝑋𝑛 ⋅ (𝑋𝑛+1 − 𝑋𝑛)

Unnormalised density?



Forward-forward RND (FF-RND) and Girsanov

𝑃 ∶  d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋0 ∼ ෤𝑝0 = ෤𝑝
𝑄 ∶  d𝑋𝑡 = 𝑔 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋0 ∼ ෤𝑞0 = ෤𝑞

d𝑃

d𝑄
𝑋 = lim

𝑝 𝑋0 ∏𝑁1(𝑋𝑛+1|𝑋𝑛)

𝑞 𝑋0 ∏𝑁2(𝑋𝑛+1|𝑋𝑛)

𝑃(𝑋)

𝑞

𝑄(𝑋)

𝑝Initial density ratio
Transition kernel ratio

=
𝑝 𝑋0

𝑞 𝑋0
exp න

𝑓𝑡(𝑋𝑡)

𝜎𝑡
2 ⋅ d𝑋𝑡 −

𝑓𝑡
2 𝑋𝑡

2𝜎𝑡
2 d𝑡 − න

𝑔𝑡 𝑋𝑡

𝜎𝑡
2 ⋅ d𝑋𝑡 +

𝑔𝑡
2(𝑋𝑡)

2𝜎𝑡
2 d𝑡

Forward Ito Integralන 𝑎𝑡(𝑋𝑡) ⋅ d𝑋𝑡 = lim ෍ 𝑎𝑛 𝑋𝑛 ⋅ (𝑋𝑛+1 − 𝑋𝑛)

Unnormalised density?



Forward-forward RND (FF-RND) and Girsanov

𝑃 ∶  d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋0 ∼ ෤𝑝0 = ෤𝑝
𝑄 ∶  d𝑋𝑡 = 𝑔 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋0 ∼ ෤𝑞0 = ෤𝑞

d𝑃

d𝑄
𝑋 = lim

𝑝 𝑋0 ∏𝑁1(𝑋𝑛+1|𝑋𝑛)

𝑞 𝑋0 ∏𝑁2(𝑋𝑛+1|𝑋𝑛)

𝑃(𝑋)

෤𝑞

𝑄(𝑋)

෤𝑝Initial density ratio
Transition kernel ratio

=
𝑝 𝑋0

𝑞 𝑋0
exp න

𝑓𝑡(𝑋𝑡)

𝜎𝑡
2 ⋅ d𝑋𝑡 −

𝑓𝑡
2 𝑋𝑡

2𝜎𝑡
2 d𝑡 − න

𝑔𝑡 𝑋𝑡

𝜎𝑡
2 ⋅ d𝑋𝑡 +

𝑔𝑡
2(𝑋𝑡)

2𝜎𝑡
2 d𝑡

Forward Ito Integralන 𝑎𝑡(𝑋𝑡) ⋅ d𝑋𝑡 = lim ෍ 𝑎𝑛 𝑋𝑛 ⋅ (𝑋𝑛+1 − 𝑋𝑛)

Unnormalised density?



Forward-forward RND (FF-RND) and Girsanov

𝑃 ∶  d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋0 ∼ ෤𝑝0 = ෤𝑝
𝑄 ∶  d𝑋𝑡 = 𝑔 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋0 ∼ ෤𝑞0 = ෤𝑞

 
d𝑃

d𝑄
𝑋 = lim

෤𝑝 𝑋0 ∏𝑁1(𝑋𝑛+1|𝑋𝑛)

෤𝑞 𝑋0 ∏𝑁2(𝑋𝑛+1|𝑋𝑛)

𝑃(𝑋)

෤𝑞

𝑄(𝑋)

෤𝑝Initial density ratio
Transition kernel ratio

=
෤𝑝 𝑋0

෤𝑞 𝑋0
exp න

𝑓𝑡(𝑋𝑡)

𝜎𝑡
2 ⋅ d𝑋𝑡 −

𝑓𝑡
2 𝑋𝑡

2𝜎𝑡
2 d𝑡 − න

𝑔𝑡 𝑋𝑡

𝜎𝑡
2 ⋅ d𝑋𝑡 +

𝑔𝑡
2(𝑋𝑡)

2𝜎𝑡
2 d𝑡

Forward Ito Integralන 𝑎𝑡(𝑋𝑡) ⋅ d𝑋𝑡 = lim ෍ 𝑎𝑛 𝑋𝑛 ⋅ (𝑋𝑛+1 − 𝑋𝑛)

Unnormalised density?

𝑤 𝑋 =
𝑍𝑝

𝑍𝑞



Forward-backward RND (FB-RND)

𝑃 ∶  d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋0 ∼ ෤𝑝0 = ෤𝑝
𝑄 ∶  d𝑋𝑡 = 𝑔 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋1 ∼ ෤𝑞1 = ෤𝑞

d𝑃

d𝑄
𝑋 = lim

𝑝0 𝑋0 ∏𝑁1(𝑋𝑛+1|𝑋𝑛)

𝑞1 𝑋1 ∏𝑁2(𝑋𝑛|𝑋𝑛+1)

𝑃(𝑋)

𝑞

𝑄(𝑋)

𝑝Initial density ratio
Transition kernel ratio



Forward-backward RND (FB-RND)

𝑃 ∶  d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋0 ∼ ෤𝑝0 = ෤𝑝
𝑄 ∶  d𝑋𝑡 = 𝑔 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋1 ∼ ෤𝑞1 = ෤𝑞

 
d𝑃

d𝑄
𝑋 = lim

෤𝑝0 𝑋0 ∏𝑁1(𝑋𝑛+1|𝑋𝑛)

෤𝑞1 𝑋1 ∏𝑁2(𝑋𝑛|𝑋𝑛+1)

𝑃(𝑋)

𝑞

𝑄(𝑋)

𝑝Initial density ratio
Transition kernel ratio

𝑤 𝑋 =
𝑍𝑝

𝑍𝑞



Forward-backward RND (FB-RND)

𝑃 ∶  d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋0 ∼ ෤𝑝0 = ෤𝑝
𝑄 ∶  d𝑋𝑡 = 𝑔 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋1 ∼ ෤𝑞1 = ෤𝑞

 
d𝑃

d𝑄
𝑋 = lim

෤𝑝0 𝑋0 ∏𝑁1(𝑋𝑛+1|𝑋𝑛)

෤𝑞1 𝑋1 ∏𝑁2(𝑋𝑛|𝑋𝑛+1)

𝑃(𝑋)

𝑞

𝑄(𝑋)

𝑝Initial density ratio
Transition kernel ratio

𝑤 𝑋 =
𝑍𝑝

𝑍𝑞

=
෤𝑝0 𝑋0

෤𝑞1 𝑋1
exp න

𝑓𝑡(𝑋𝑡)

𝜎𝑡
2 ⋅ d𝑋𝑡 −

𝑓𝑡
2 𝑋𝑡

2𝜎𝑡
2 d𝑡 − න

𝑔𝑡 𝑋𝑡

𝜎𝑡
2 ⋅ d𝑋𝑡 +

𝑔𝑡
2(𝑋𝑡)

2𝜎𝑡
2 d𝑡

Backward Ito Integralන 𝑎𝑡(𝑋𝑡) ⋅ d𝑋𝑡 = lim ෍ 𝑎𝑛+1 𝑋𝑛+1 ⋅ (𝑋𝑛+1 − 𝑋𝑛)



A Side Note on Stochastic Intergrals 

න 𝑎𝑡(𝑋𝑡) ⋅ d𝑋𝑡 = lim ෍ 𝑎𝑛+1 𝑋𝑛+1 ⋅ (𝑋𝑛+1 − 𝑋𝑛)

න 𝑎𝑡(𝑋𝑡) ⋅ d𝑋𝑡 = lim ෍ 𝑎𝑛 𝑋𝑛 ⋅ (𝑋𝑛+1 − 𝑋𝑛)

න 𝑎𝑡(𝑋𝑡) ⋅ d𝑋𝑡 − න 𝑎𝑡 𝑋𝑡 ⋅ d𝑋𝑡 = − න𝜎𝑡
2∇ ⋅ 𝑎𝑡d𝑡

Conversion rule:

Ito backward integral

Ito forward integral



From Density Ratio to Path RND

Unnormalised density 1: ෤𝑝
Unnormalised density 2: ෤𝑞

Density ratio:  𝑤 𝑥 =
෤𝑝(𝑥)

෤𝑞(𝑥)

Path measure 1: 𝑃
Path measure 2: 𝑄

“Unnormalised” RND: 𝑤 𝑋 =
𝑍𝑝

𝑍𝑞

d𝑃 

d𝑄
𝑋



From Density Ratio to Path RND

Unnormalised density 1: ෤𝑝
Unnormalised density 2: ෤𝑞

Density ratio:  𝑤 𝑥 =
෤𝑝(𝑥)

෤𝑞(𝑥)

Path measure 1: 𝑃
Path measure 2: 𝑄

“Unnormalised” RND: 𝑤 𝑋 =
𝑍𝑝

𝑍𝑞

d𝑃 

d𝑄
𝑋

• Importance sampling: 𝑤 𝑥 =
෤𝑝(𝑥)

෤𝑞(𝑥)

• FEP: Δ𝐹 = − log(׬ 𝑞 𝑥 𝑤(𝑥) d𝑥)

• PT Swap: 𝛼 = min{1,
𝑤(𝑦) 

𝑤(𝑥)
}



From Density Ratio to Path RND

Unnormalised density 1: ෤𝑝
Unnormalised density 2: ෤𝑞

Density ratio:  𝑤 𝑥 =
෤𝑝(𝑥)

෤𝑞(𝑥)

Path measure 1: 𝑃
Path measure 2: 𝑄

“Unnormalised” RND: 𝑤 𝑋 =
𝑍𝑝

𝑍𝑞

d𝑃 

d𝑄
𝑋

• Importance sampling: 𝑤 𝑥 =
෤𝑝(𝑥)

෤𝑞(𝑥)

• FEP: Δ𝐹 = − log(׬ 𝑞 𝑥 𝑤(𝑥) d𝑥)

• PT Swap: 𝛼 = min{1,
𝑤(𝑦) 

𝑤(𝑥)
}

• Path Importance sampling: 𝑤 𝑋

• Path FEP: Δ𝐹 = − log(׬ d𝑄 𝑋 𝑤(𝑋))

• Path PT Swap: 𝛼 = min{1,
𝑤(𝑌) 

𝑤(𝑋)
}



From Density Ratio to Path RND

Unnormalised density 1: ෤𝑝
Unnormalised density 2: ෤𝑞

Density ratio:  𝑤 𝑥 =
෤𝑝(𝑥)

෤𝑞(𝑥)

Path measure 1: 𝑃
Path measure 2: 𝑄

“Unnormalised” RND: 𝑤 𝑋 =
𝑍𝑝

𝑍𝑞

d𝑃 

d𝑄
𝑋

• Importance sampling: 𝑤 𝑥 =
෤𝑝(𝑥)

෤𝑞(𝑥)

• FEP: Δ𝐹 = − log(׬ 𝑞 𝑥 𝑤(𝑥) d𝑥)

• PT Swap: 𝛼 = min{1,
𝑤(𝑦) 

𝑤(𝑥)
}

• Path Importance sampling: 𝑤 𝑋

• Path FEP: Δ𝐹 = − log(׬ d𝑄 𝑋 𝑤(𝑋))

• Path PT Swap: 𝛼 = min{1,
𝑤(𝑌) 

𝑤(𝑋)
}

Wait…WHY PATH?



From Density Ratio to Path RND

Unnormalised density 1: ෤𝑝
Unnormalised density 2: ෤𝑞

Density ratio:  𝑤 𝑥 =
෤𝑝(𝑥)

෤𝑞(𝑥)

Path measure 1: 𝑃
Path measure 2: 𝑄

“Unnormalised” RND: 𝑤 𝑋 =
𝑍𝑝

𝑍𝑞

d𝑃 

d𝑄
𝑋

• Importance sampling: 𝑤 𝑥 =
෤𝑝(𝑥)

෤𝑞(𝑥)

• FEP: Δ𝐹 = − log(׬ 𝑞 𝑥 𝑤(𝑥) d𝑥)

• PT Swap: 𝛼 = min{1,
𝑤(𝑦) 

𝑤(𝑥)
}

• Path Importance sampling: 𝑤 𝑋

• Path FEP: Δ𝐹 = − log(׬ d𝑄 𝑋 𝑤(𝑋))

• Path PT Swap: 𝛼 = min{1,
𝑤(𝑌) 

𝑤(𝑋)
}

𝑃(𝑋)

𝑞

𝑄(𝑋)

𝑝

Wait…WHY PATH?



From Density Ratio to Path RND

Unnormalised density 1: ෤𝑝
Unnormalised density 2: ෤𝑞

Density ratio:  𝑤 𝑥 =
෤𝑝(𝑥)

෤𝑞(𝑥)

Path measure 1: 𝑃
Path measure 2: 𝑄

“Unnormalised” RND: 𝑤 𝑋 =
𝑍𝑝

𝑍𝑞

d𝑃 

d𝑄
𝑋

• Importance sampling: 𝑤 𝑥 =
෤𝑝(𝑥)

෤𝑞(𝑥)

• FEP: Δ𝐹 = − log(׬ 𝑞 𝑥 𝑤(𝑥) d𝑥)

• PT Swap: 𝛼 = min{1,
𝑤(𝑦) 

𝑤(𝑥)
}

• Path Importance sampling: 𝑤 𝑋

• Path FEP: Δ𝐹 = − log(׬ d𝑄 𝑋 𝑤(𝑋))

• Path PT Swap: 𝛼 = min{1,
𝑤(𝑌) 

𝑤(𝑋)
}

data processing inequality (DPI) told us
 

𝑃(𝑋)

𝑞

𝑄(𝑋)

𝑝

Wait…WHY PATH?



From Density Ratio to Path RND

Unnormalised density 1: ෤𝑝
Unnormalised density 2: ෤𝑞

Density ratio:  𝑤 𝑥 =
෤𝑝(𝑥)

෤𝑞(𝑥)

Path measure 1: 𝑃
Path measure 2: 𝑄

“Unnormalised” RND: 𝑤 𝑋 =
𝑍𝑝

𝑍𝑞

d𝑃 

d𝑄
𝑋

• Importance sampling: 𝑤 𝑥 =
෤𝑝(𝑥)

෤𝑞(𝑥)

• FEP: Δ𝐹 = − log(׬ 𝑞 𝑥 𝑤(𝑥) d𝑥)

• PT Swap: 𝛼 = min{1,
𝑤(𝑦) 

𝑤(𝑥)
}

• Path Importance sampling: 𝑤 𝑋

• Path FEP: Δ𝐹 = − log(׬ d𝑄 𝑋 𝑤(𝑋))

• Path PT Swap: 𝛼 = min{1,
𝑤(𝑌) 

𝑤(𝑋)
}

data processing inequality (DPI) told us
 

𝐷𝑓[𝑞| 𝑝 ≤ 𝐷𝑓[𝑄||𝑃]

𝑃(𝑋)

𝑞

𝑄(𝑋)

𝑝

Wait…WHY PATH?



From Density Ratio to Path RND

Unnormalised density 1: ෤𝑝
Unnormalised density 2: ෤𝑞

Density ratio:  𝑤 𝑥 =
෤𝑝(𝑥)

෤𝑞(𝑥)

Path measure 1: 𝑃
Path measure 2: 𝑄

“Unnormalised” RND: 𝑤 𝑋 =
𝑍𝑝

𝑍𝑞

d𝑃 

d𝑄
𝑋

• Importance sampling: 𝑤 𝑥 =
෤𝑝(𝑥)

෤𝑞(𝑥)

• FEP: Δ𝐹 = − log(׬ 𝑞 𝑥 𝑤(𝑥) d𝑥)

• PT Swap: 𝛼 = min{1,
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𝑝

Wait…WHY PATH?

Path weight always has larger variance?
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If 𝑄 = 𝑃 (time-reversal)
The path weight will have 0 variance



Time-reversal and Nelson’s relation

𝑃 ∶  d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋0 ∼ 𝑝0

𝑄 ∶  d𝑋𝑡 = 𝑔 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 , 𝑋1 ∼ 𝑝1

𝑄 = 𝑃, i. e. ,
d𝑄

d𝑃
= 1

Iff

𝑔 ⋅, 𝑡 = 𝑓 ⋅, 𝑡 − 𝜎𝑡
2∇log 𝑝𝑡(⋅)

“time-reversal”
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(escorted) Jarzynski/Crooks

Replica exchange with nonequilibrium 
switches [1] / Accelerated PT [2]

[1] Ballard, Andrew J., and Christopher Jarzynski. "Replica exchange with nonequilibrium switches." Proceedings of the National Academy of Sciences 106.30 (2009): 12224-12229.
[2] Zhang, Leo, et al. "Accelerated Parallel Tempering via Neural Transports." arXiv preprint arXiv:2502.10328 (2025).
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Path measure 1: 𝑃
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Replica exchange with nonequilibrium 
switches [1] / Accelerated PT [2]

[1] Ballard, Andrew J., and Christopher Jarzynski. "Replica exchange with nonequilibrium switches." Proceedings of the National Academy of Sciences 106.30 (2009): 12224-12229.
[2] Zhang, Leo, et al. "Accelerated Parallel Tempering via Neural Transports." arXiv preprint arXiv:2502.10328 (2025).

Equilibrium method and 
nonequilibrium ones are 
not too different:
One use Marginal space RND 
One use Path space RND 



Example: Path RND to Jarzynski Equality
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Crooks Fluctuation Theorem

𝐄𝐐

dP

dQ
= 𝐄𝐐

𝑍0

𝑍1
exp න−𝜕𝑡𝑈𝑡(𝑋𝑡)d𝑡 = 1 Jarzynski Equation

Example: Path RND to Jarzynski Equality



From Jarzynski to Escorted Jarzynski

𝑋0 ∼ 𝑞 d𝑋𝑡 = [−𝜎2∇𝑈𝑡 𝑋𝑡 + 𝑢𝑡 𝑋𝑡 ]d𝑡 + 𝜎 2 d𝑊𝑡 , 

𝑋1 ∼ 𝑝 d𝑋𝑡 = [𝜎2∇𝑈𝑡 𝑋𝑡 + 𝑢𝑡 𝑋𝑡 ]d𝑡 + 𝜎 2 d𝑊𝑡 , 

d𝐏

d𝐐
=

𝑍0

𝑍1
exp න−𝜕𝑡𝑈𝑡(𝑋𝑡)d𝑡 − ∇𝑈𝑡 ⋅ 𝑢𝑡d𝑡 + ∇ ⋅ 𝑢𝑡d𝑡

Controlled Crooks Fluctuation Theorem

𝐄𝐐 exp න−𝜕𝑡𝑈𝑡(𝑋𝑡)d𝑡 − ∇𝑈𝑡 ⋅ 𝑢𝑡d𝑡 + ∇ ⋅ 𝑢𝑡d𝑡 =
𝑍1

𝑍0
Escorted Jarzynski Equation



From Jarzynski to Escorted Jarzynski

𝑋0 ∼ 𝑞 d𝑋𝑡 = [−𝜎2∇𝑈𝑡 𝑋𝑡 + 𝑢𝑡 𝑋𝑡 ]d𝑡 + 𝜎 2 d𝑊𝑡 , 

𝑋1 ∼ 𝑝 d𝑋𝑡 = [𝜎2∇𝑈𝑡 𝑋𝑡 + 𝑢𝑡 𝑋𝑡 ]d𝑡 + 𝜎 2 d𝑊𝑡 , 

d𝐏

d𝐐
=

𝑍0

𝑍1
exp න−𝜕𝑡𝑈𝑡(𝑋𝑡)d𝑡 − ∇𝑈𝑡 ⋅ 𝑢𝑡d𝑡 + ∇ ⋅ 𝑢𝑡d𝑡

Controlled Crooks Fluctuation Theorem

𝐄𝐐 exp න−𝜕𝑡𝑈𝑡(𝑋𝑡)d𝑡 − ∇𝑈𝑡 ⋅ 𝑢𝑡d𝑡 + ∇ ⋅ 𝑢𝑡d𝑡 =
𝑍1

𝑍0
Escorted Jarzynski Equation

Can also be derived via PDEs [1] / Feynman-Kac formula [2]:
[1] Albergo, M. S., & Vanden-Eijnden, E (2025). NETS: A Non-equilibrium Transport Sampler. ICML 2025.
[2] Skreta, M., Akhound-Sadegh, T., Ohanesian, V., Bondesan, R., Aspuru-Guzik, A., Doucet, A., ... & Neklyudov, K. (2025). 
Feynman-kac correctors in diffusion: Annealing, guidance, and product of experts. ICML 2025.



From Density Ratio to Path RND

Path measure 1: 𝑃
Path measure 2: 𝑄

“Unnormalised” RND: 𝑤 𝑋 =
𝑍𝑝

𝑍𝑞

d𝑃 

d𝑄
𝑋

• Path Importance sampling: 𝑤 𝑋

• Path FEP: Δ𝐹 = − log(׬ d𝑄 𝑋 𝑤(𝑋))

• Path PT Swap: 𝛼 = min{1,
𝑤(𝑌) 

𝑤(𝑋)
}

(escorted) Jarzynski/Crooks

Replica exchange with nonequilibrium 
switches [1] / Accelerated PT [2]

[1] Ballard, Andrew J., and Christopher Jarzynski. "Replica exchange with nonequilibrium switches." Proceedings of the National Academy of Sciences 106.30 (2009): 12224-12229.
[2] Zhang, Leo, et al. "Accelerated Parallel Tempering via Neural Transports." arXiv preprint arXiv:2502.10328 (2025).

Equilibrium method and 
nonequilibrium ones are 
not too different:
One use Marginal space RND 
One use Path space RND 

√
√



From Density Ratio to Path RND

Path measure 1: 𝑃
Path measure 2: 𝑄

“Unnormalised” RND: 𝑤 𝑋 =
𝑍𝑝

𝑍𝑞

d𝑃 

d𝑄
𝑋

• Path Importance sampling: 𝑤 𝑋

• Path FEP: Δ𝐹 = − log(׬ d𝑄 𝑋 𝑤(𝑋))

• Path PT Swap: 𝛼 = min{1,
𝑤(𝑌) 

𝑤(𝑋)
}

(escorted) Jarzynski/Crooks

Replica exchange with nonequilibrium 
switches [1] / Accelerated PT [2]

[1] Ballard, Andrew J., and Christopher Jarzynski. "Replica exchange with nonequilibrium switches." Proceedings of the National Academy of Sciences 106.30 (2009): 12224-12229.
[2] Zhang, Leo, et al. "Accelerated Parallel Tempering via Neural Transports." arXiv preprint arXiv:2502.10328 (2025).

Equilibrium method and 
nonequilibrium ones are 
not too different:
One use Marginal space RND 
One use Path space RND 

√
√



Parallel tempering

• An MCMC algorithm for target density ෤𝜋𝑁

• Workflow:
• Choose an easy-to-sample reference ෤𝜋0

• Design multiple intermediate targets ෤𝜋𝑛

• Design two MCMC kernels with invariant measure as ෤𝜋0 × ෤𝜋1 × ⋯ × ෤𝜋𝑁

1. Local exploration kernel:  independent MCMC for each ෤𝜋𝑛

2. Communication kernel: swap between all adjacent pairs ( ෤𝜋𝑛, ෤𝜋𝑛+1)

෤𝜋𝑁

෤𝜋0

…



Parallel tempering

• An MCMC algorithm for target density ෤𝜋𝑁

• Workflow:
• Choose an easy-to-sample reference ෤𝜋0

• Design multiple intermediate targets ෤𝜋𝑛

• Design two MCMC kernels with invariant measure as ෤𝜋0 × ෤𝜋1 × ⋯ × ෤𝜋𝑁

1. Local exploration kernel:  independent MCMC for each ෤𝜋𝑛

2. Communication kernel: swap between all adjacent pairs ( ෤𝜋𝑛, ෤𝜋𝑛+1)

෤𝜋𝑁

෤𝜋0

…

Unchanged!

Extend to path!



Parallel tempering Swap in Path Space

Path measure 1: 𝑃
Path measure 2: 𝑄

“Unnormalised” RND: 𝑤 𝑋 =
𝑍𝑝

𝑍𝑞

d𝑃 

d𝑄
𝑋

𝑝

𝑞

(1) Current state 𝑥, 𝑦 ∼ 𝑝 𝑥 × 𝑞(𝑦) 



Parallel tempering Swap in Path Space

Path measure 1: 𝑃
Path measure 2: 𝑄

“Unnormalised” RND: 𝑤 𝑋 =
𝑍𝑝

𝑍𝑞

d𝑃 

d𝑄
𝑋

𝑝

𝑞

𝑃(𝑋)

𝑞

𝑄(𝑌)

𝑝

(2) Extend current states with path
𝑋, 𝑌 ∼ 𝑃 𝑋 × 𝑄(𝑌)



Parallel tempering Swap in Path Space

Path measure 1: 𝑃
Path measure 2: 𝑄

“Unnormalised” RND: 𝑤 𝑋 =
𝑍𝑝

𝑍𝑞

d𝑃 

d𝑄
𝑋

𝑝

𝑞

𝑃(𝑋)

𝑞

𝑄(𝑌)

𝑝

(3) Swap the Paths
𝑋′, 𝑌′ ← (𝑌, 𝑋)

*Note that this proposal function is still involution



Parallel tempering Swap in Path Space

Path measure 1: 𝑃
Path measure 2: 𝑄

“Unnormalised” RND: 𝑤 𝑋 =
𝑍𝑝

𝑍𝑞

d𝑃 

d𝑄
𝑋

𝑝

𝑞

𝑃(𝑋)

𝑞

𝑄(𝑌)

𝑝

(4) Calculate MH correction

𝛼 = min{1,
d 𝑃 𝑋′ × 𝑄(𝑌′)

d 𝑃 𝑋 × 𝑄(𝑌)
}
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Path measure 2: 𝑄
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d𝑃 

d𝑄
𝑋

𝑝

𝑞
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𝑝
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d 𝑃 𝑋 × 𝑄(𝑌)
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Parallel tempering Swap in Path Space

Path measure 1: 𝑃
Path measure 2: 𝑄

“Unnormalised” RND: 𝑤 𝑋 =
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d𝑃 

d𝑄
𝑋

𝑝
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𝑝
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}



Parallel tempering Swap in Path Space

Path measure 1: 𝑃
Path measure 2: 𝑄

“Unnormalised” RND: 𝑤 𝑋 =
𝑍𝑝

𝑍𝑞

d𝑃 

d𝑄
𝑋

𝑝

𝑞

𝑃(𝑋)

𝑞

𝑄(𝑌)

𝑝

(4) Calculate MH correction

𝛼 = min{1,
d𝑃

d𝑄
(𝑌)

d𝑄

d𝑃
(𝑋)}



Parallel tempering Swap in Path Space

Path measure 1: 𝑃
Path measure 2: 𝑄

“Unnormalised” RND: 𝑤 𝑋 =
𝑍𝑝

𝑍𝑞

d𝑃 

d𝑄
𝑋

(4) Calculate MH correction

𝛼 = min{1,
d𝑃

d𝑄
(𝑌)

d𝑄

d𝑃
(𝑋)}

if 𝑃 ≈ 𝑄, 𝛼 ≈ 1 

𝑃(𝑋)

𝑞

𝑄(𝑌)

𝑝



Parallel tempering Swap in Path Space

Path measure 1: 𝑃
Path measure 2: 𝑄

“Unnormalised” RND: 𝑤 𝑋 =
𝑍𝑝

𝑍𝑞

d𝑃 

d𝑄
𝑋

𝑝

𝑞

𝑃(𝑋)

𝑞

𝑄(𝑌)

𝑝

(4) Calculate MH correction

𝛼 = min{1,
𝑍𝑝

𝑍𝑞

d𝑃

d𝑄
𝑌

𝑍𝑞

𝑍𝑝

d𝑄

d𝑃
(𝑋)}



Parallel tempering Swap in Path Space

Path measure 1: 𝑃
Path measure 2: 𝑄

“Unnormalised” RND: 𝑤 𝑋 =
𝑍𝑝

𝑍𝑞

d𝑃 

d𝑄
𝑋

𝑝

𝑞

𝑃(𝑋)

𝑞

𝑄(𝑌)

𝑝

How to realise the path?
CMCD Path / Diffusion Path / etc…



Accelerated Parallel tempering in Path Space

෤𝜋𝑁

෤𝜋0

… swap    local-explore   swap   local-explore   …



• Our setup so far:
• Given unnormalised density, generated samples from it

• Diffusion test-time control:
• Given a pretrained diffusion, steer distribution of generated samples

Accelerated Parallel tempering in Path Space
For Diffusion Test-time Control
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෤𝜋0

෤𝜋𝑁

…
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෤𝜋0

෤𝜋𝑁

…



Accelerated Parallel tempering in Path Space
For Diffusion Test-time Control

෤𝜋0

෤𝜋𝑁

…

In short, control the marginal of each denoising step using APT



Accelerated Parallel tempering in Path Space
For Diffusion Test-time Control (reward-tilting as example)



Accelerated Parallel tempering in Path Space
For Diffusion Test-time Control (reward-tilting as example)

෤𝜋𝑁 ∝ 𝑝𝑁exp(𝑟𝑁)

…

෤𝜋0 ∝ 𝑝0exp(𝑟)



Accelerated Parallel tempering in Path Space
For Diffusion Test-time Control (reward-tilting as example)

𝑃(𝑋)

𝑄(𝑌)

෤𝜋𝑛+1 ∝ 𝑝𝑛+1exp(𝑟𝑛+1)

෤𝜋𝑛 ∝ 𝑝𝑛exp(𝑟𝑛)



Accelerated Parallel tempering in Path Space
For Diffusion Test-time Control (reward-tilting as example)

𝛼 = min{1,
d𝑃

d𝑄
(𝑌)

d𝑄

d𝑃
(𝑋)}

𝑃(𝑋)

𝑄(𝑌)

෤𝜋𝑛+1 ∝ 𝑝𝑛+1exp(𝑟𝑛+1)

෤𝜋𝑛 ∝ 𝑝𝑛exp(𝑟𝑛)



Accelerated Parallel tempering in Path Space
For Diffusion Test-time Control (reward-tilting as example)

𝛼 = min{1,
d𝑃

d𝑄
(𝑌)

d𝑄

d𝑃
(𝑋)}

𝑃(𝑋)

𝑄(𝑌)

෤𝜋𝑛+1 ∝ 𝑝𝑛+1exp(𝑟𝑛+1)

෤𝜋𝑛 ∝ 𝑝𝑛exp(𝑟𝑛)

d𝑃

d𝑄
∝

෥𝜋𝑛 𝑋0

෥𝜋𝑛+1 𝑋1
lim

∏𝑁1(𝑋𝑘+1|𝑋𝑘)

∏𝑁2(𝑋𝑘|𝑋𝑘+1)



Accelerated Parallel tempering in Path Space
For Diffusion Test-time Control (reward-tilting as example)

𝛼 = min{1,
d𝑃

d𝑄
(𝑌)

d𝑄

d𝑃
(𝑋)}

𝑃(𝑋)

𝑄(𝑌)

෤𝜋𝑛+1 ∝ 𝑝𝑛+1exp(𝑟𝑛+1)

෤𝜋𝑛 ∝ 𝑝𝑛exp(𝑟𝑛)

d𝑃

d𝑄
∝

෥𝜋𝑛 𝑋0

෥𝜋𝑛+1 𝑋1

𝑁1(𝑋1|𝑋0)

𝑁2(𝑋0|𝑋1)



Accelerated Parallel tempering in Path Space
For Diffusion Test-time Control (reward-tilting as example)

𝛼 = min{1,
d𝑃

d𝑄
(𝑌)

d𝑄

d𝑃
(𝑋)}

𝑃(𝑋)

𝑄(𝑌)

෤𝜋𝑛+1 ∝ 𝑝𝑛+1exp(𝑟𝑛+1)

෤𝜋𝑛 ∝ 𝑝𝑛exp(𝑟𝑛)

d𝑃

d𝑄
∝

𝑝𝑛 𝑋0

𝑝𝑛+1 𝑋1

exp(𝑟𝑛(𝑋0))

exp(𝑟𝑛+1(𝑋0))

𝑁1(𝑋1|𝑋0)

𝑁2(𝑋0|𝑋1)



Accelerated Parallel tempering in Path Space
For Diffusion Test-time Control (reward-tilting as example)

𝛼 = min{1,
d𝑃

d𝑄
(𝑌)

d𝑄

d𝑃
(𝑋)}

𝑃(𝑋)

𝑄(𝑌)

෤𝜋𝑛+1 ∝ 𝑝𝑛+1exp(𝑟𝑛+1)

෤𝜋𝑛 ∝ 𝑝𝑛exp(𝑟𝑛)

d𝑃

d𝑄
∝

𝑝𝑛 𝑋0

𝑝𝑛+1 𝑋1

exp(𝑟𝑛(𝑋0))

exp(𝑟𝑛+1(𝑋0))

𝑁1(𝑋1|𝑋0)

𝑁2(𝑋0|𝑋1)

known



Accelerated Parallel tempering in Path Space
For Diffusion Test-time Control (reward-tilting as example)

𝛼 = min{1,
d𝑃

d𝑄
(𝑌)

d𝑄

d𝑃
(𝑋)}

𝑃(𝑋)

𝑄(𝑌)

෤𝜋𝑛+1 ∝ 𝑝𝑛+1exp(𝑟𝑛+1)

෤𝜋𝑛 ∝ 𝑝𝑛exp(𝑟𝑛)

d𝑃

d𝑄
∝

𝑝𝑛 𝑋0

𝑝𝑛+1 𝑋1

exp(𝑟𝑛(𝑋0))

exp(𝑟𝑛+1(𝑋0))

𝑁1(𝑋1|𝑋0)

𝑁2(𝑋0|𝑋1)

unknown



Accelerated Parallel tempering in Path Space
For Diffusion Test-time Control (reward-tilting as example)

𝑝𝑛 𝑋0

𝑝𝑛+1 𝑋1
= ?

𝑃:  d𝑋𝑡 = diffusion denoising drift d𝑡 + 𝜎𝑡d𝑊𝑡 𝑋1 ∼ 𝑝𝑛+1

𝑃:  d𝑋𝑡 = diffusion noising drift d𝑡 + 𝜎𝑡d𝑊𝑡  𝑋0 ∼ 𝑝𝑛 



Accelerated Parallel tempering in Path Space
For Diffusion Test-time Control (reward-tilting as example)

𝑝𝑛 𝑋0

𝑝𝑛+1 𝑋1
= ?

𝑃:  d𝑋𝑡 = diffusion denoising drift d𝑡 + 𝜎𝑡d𝑊𝑡 𝑋1 ∼ 𝑝𝑛+1

𝑃:  d𝑋𝑡 = diffusion noising drift d𝑡 + 𝜎𝑡d𝑊𝑡  𝑋0 ∼ 𝑝𝑛 

𝑑𝑃

𝑑𝑃
= 1



Accelerated Parallel tempering in Path Space
For Diffusion Test-time Control (reward-tilting as example)

𝑝𝑛 𝑋0

𝑝𝑛+1 𝑋1

𝑁noise(𝑋1|𝑋0)

𝑁denoise(𝑋0|𝑋1)
≈ 1 

𝑃:  d𝑋𝑡 = diffusion denoising drift d𝑡 + 𝜎𝑡d𝑊𝑡 𝑋1 ∼ 𝑝𝑛+1

𝑃:  d𝑋𝑡 = diffusion noising drift d𝑡 + 𝜎𝑡d𝑊𝑡  𝑋0 ∼ 𝑝𝑛 

𝑑𝑃

𝑑𝑃
= 1



Accelerated Parallel tempering in Path Space
For Diffusion Test-time Control (reward-tilting as example)

𝑝𝑛 𝑋0

𝑝𝑛+1 𝑋1
≈

𝑁denoise(𝑋0|𝑋1)

𝑁noise(𝑋1|𝑋0)

𝑃:  d𝑋𝑡 = diffusion denoising drift d𝑡 + 𝜎𝑡d𝑊𝑡 𝑋1 ∼ 𝑝𝑛+1

𝑃:  d𝑋𝑡 = diffusion noising drift d𝑡 + 𝜎𝑡d𝑊𝑡  𝑋0 ∼ 𝑝𝑛 

𝑑𝑃

𝑑𝑃
= 1



Accelerated Parallel tempering in Path Space
For Diffusion Test-time Control (reward-tilting as example)

𝛼 = min{1,
d𝑃

d𝑄
(𝑌)

d𝑄

d𝑃
(𝑋)}

𝑃(𝑋)

𝑄(𝑌)

෤𝜋𝑛+1 ∝ 𝑝𝑛+1exp(𝑟𝑛+1)

෤𝜋𝑛 ∝ 𝑝𝑛exp(𝑟𝑛)

d𝑃

d𝑄
∝

𝑝𝑛 𝑋0

𝑝𝑛+1 𝑋1

exp(𝑟𝑛(𝑋0))

exp(𝑟𝑛+1(𝑋0))

𝑁1(𝑋1|𝑋0)

𝑁2(𝑋0|𝑋1)

unknown



CREPE: 
Controlling Diffusion with Replica Exchange



CREPE: 
Controlling Diffusion with Replica Exchange



CREPE: 
Controlling Diffusion with Replica Exchange



CREPE: 
Controlling Diffusion with Replica Exchange



CREPE: 
Controlling Diffusion with Replica Exchange



CREPE: 
Controlling Diffusion with Replica Exchange



From Density Ratio to Path RND

Unnormalised density 1: ෤𝑝
Unnormalised density 2: ෤𝑞

Density ratio:  𝑤 𝑥 =
෤𝑝(𝑥)

෤𝑞(𝑥)

Path measure 1: 𝑃
Path measure 2: 𝑄

“Unnormalised” RND: 𝑤 𝑋 =
𝑍𝑝

𝑍𝑞

d𝑃 

d𝑄
𝑋

• Importance sampling: 𝑤 𝑥 =
෤𝑝(𝑥)

෤𝑞(𝑥)

• FEP: Δ𝐹 = − log(׬ 𝑞 𝑥 𝑤(𝑥) d𝑥)

• PT Swap: 𝛼 = min{1,
𝑤(𝑦) 

𝑤(𝑥)
}

• Path Importance sampling: 𝑤 𝑋

• Path FEP: Δ𝐹 = − log(׬ d𝑄 𝑋 𝑤(𝑋))

• Path PT Swap: 𝛼 = min{1,
𝑤(𝑌) 

𝑤(𝑋)
}



Collaborators (random order): 
Free-energy estimator with adaptive transport



Collaborators (random order): 
Accelerated parallel tempering



Collaborators (random order): 
Controlling diffusion with Replica Exchange
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