

Check out our paper!

Bidirectional Consistency Models

Liangchen Li^{*, 1} Jiajun He^{*, 2}

*equal contribution ¹Independent Researcher ²University of Cambridge

Code and weights released!

TL;DR: We extend consistency models to Bidirectional Consistency Models for fast sampling and its inversion.

Motivation

- Diffusion models requires hundreds of NFEs for high- \bullet quality samples; consistency models (CMs) only requires **1-2 NFE**;
- (ODE-based) diffusion models can map ulletnoise \longleftrightarrow image
- Consistency models only support \bullet

New Sampling Schemes

noise \rightarrow image

Motivation

Diffusion Models estimate Consistency Models estimates **scores** along the PF ODE: **starting points** of the PF ODE:

Bidirectional Consistency Models estimates the points on the entire PF ODE towards both denoising and noising directions:

Combination of both can yield better performance:

Results

In terms of sampling, BCM achieves competitive FID \bullet compared to CMs:

CIFAR-10			ImageNet-64		
Methods	NFE	FID	Methods	NFE	FID
iCT	1	2.83	СТ	1	4.02
	2	2.46		2	3.20
iCT-deep	1	2.51		1	3.25
	2	2.24	ici-deep	2	2.77
BCM	1	3.10		1	4.18
	2	2.39		2	2.88
	3	2.50	BCIN	3	2.78
	4	2.29		4	2.68
BCM-deep	1	2.64		1	3.14
	2	2.36		2	2.45
	3	2.19	BCIVI-aeep	3	2.61
	4	2.07		4	2.35

Methods

- We train a network $f_{\theta}(x, t_1, t_2)$ mapping x from time \bullet step t_1 to t_2 ;
- Given training image x, Gaussian noise z, and random \bullet time steps t, t', we calculate:
- 1. Target image:

 $x_0 \leftarrow f_{\mathrm{sg}(\theta)}(x+tz,t,0)$

- 2. Estimator of x_0 : $x_0' \leftarrow f_{\theta}(x + (t + \delta)z, t + \delta, 0)$
- 3. Estimator of $x_{t'}$: $x_{t'} \leftarrow f_{\theta}(x + tz, t, t')$

In terms of inversion, BCM achieves lower reconstruction error with fewer NFE:

New estimator of x_0 : 4. $x_0'' \leftarrow f_{\mathrm{sg}(\theta)}(x_{t'}, t', 0)$

Consistency

training loss

We minimize $d(x_0, x'_0)$ and $d(x_0, x''_0)$ together: \bullet

constraint

- (a) CIFAR-10. (b) ImageNet-64.
- Interpolate between two real images and blind restoration of JPEG Images:

