Pursuits and Challenges Towards Simulation-free Training of Neural Sampler

Jiajun He & Yuanqi Du @MILA Sampling Reading Group

Collaborators and Supervisors:

Francisco Vargas, Dinghuai Zhang, Shreyas Padhy, RuiKang OuYang, Carla Gomes, José Miguel Hernández-Lobato

Unnormalized density function:

$$p_{\text{target}}(x) = \frac{\tilde{p}(x)}{Z}, \qquad Z = \int \tilde{p}(x) dx$$

Obtain sample $x \sim p_{target}$.

Unnormalized density function:

$$p_{\text{target}}(x) = \frac{\tilde{p}(x)}{Z}, \qquad Z = \int \tilde{p}(x) dx$$

Obtain sample $x \sim p_{target}$.

 \leftarrow Bayesian inference: $p_{\text{target}} \propto \text{likelihood} \times \text{prior}$

Unnormalized density function:

$$p_{\text{target}}(x) = \frac{\tilde{p}(x)}{Z}, \qquad Z = \int \tilde{p}(x) dx$$

Obtain sample $x \sim p_{target}$.

← Bayesian inference: p_{target} ∝ likelihood × prior ← Boltzmann distribution (molecules, etc): p_{target} ∝ exp($-\beta U$)

Unnormalized density function:

$$p_{\text{target}}(x) = \frac{\tilde{p}(x)}{Z}, \qquad Z = \int \tilde{p}(x) dx$$

Obtain sample $x \sim p_{target}$.

✓ Bayesian inference: p_{target} ∝ likelihood × prior
 ✓ Boltzmann distribution (molecules, etc): p_{target} ∝ exp(-βU)
 ✓ Rare event: $p_{target}(x) \propto \mathbf{1}_B(x)p(x)$

Markov chain Monte Carlo (MCMC)

Markov chain Monte Carlo (MCMC)

For example, unadjusted Langevin dynamics:

 $\mathrm{d}X_t = \nabla \log \tilde{p}(X_t) \mathrm{d}t + \sqrt{2} \mathrm{d}W_t$

Markov chain Monte Carlo (MCMC)

For example, unadjusted Langevin dynamics:

$$\mathrm{d}X_t = \nabla \log \tilde{p}(X_t) \mathrm{d}t + \sqrt{2} \mathrm{d}W_t$$

dependent samples; auto-correlation reduces efficiency sample size

Markov chain Monte Carlo (MCMC)

For example, unadjusted Langevin dynamics:

$$\mathrm{d}X_t = \nabla \log \tilde{p}(X_t) \mathrm{d}t + \sqrt{2} \mathrm{d}W_t$$

dependent samples; auto-correlation reduces efficiency sample size
ergodicity; only guarantee convergence with infinite steps

Neural samplers

Train a neural network to amortize the sampling process

Neural samplers

Train a neural network to amortize the sampling process

independent samples!

🙄 can mix in finite time

Neural samplers

Train a neural network to amortize the sampling process

independent samples!can mix in finite time

Neural samplers are in fact generative models:

Train a diffusion (like) model

$$\mathrm{d}X_t = f_\theta(X_t, t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t,$$

Train a diffusion (like) model

$$\mathrm{d}X_t = f_\theta(X_t, t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t,$$

transporting samples from p_{prior} to p_{target} :

$$X_0 \sim p_{\text{prior}}$$
, and want $X_T \sim p_{\text{target}}$

1. Time-reversal sampler

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Want: $X_T \sim p_{\text{target}}$

1. Time-reversal sampler

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}$$

Set a target process: $dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t$, $Y_0 \sim p_{target}$,

1. Time-reversal sampler

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

Set a target process:
$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{target}$$

a simple function, e.g., 0

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

align
Set a target process:
$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

a simple function, e.g., 0

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

align
$$X_t \sim Y_{T-t}$$

Set a target process:
$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

a simple function, e.g., 0

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

align
$$X_t \sim Y_{T-t}$$

$$X_T \sim p_{\text{target}}$$

Set a target process:
$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_0 \sim p_{\text{target}},$$

a simple function, e.g., 0

1. Time-reversal sampler

Want a sample process (prior to target),

 $dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$

Set a target process:
$$dY_t = g(Y_t, t)dt + \sigma\sqrt{2}dW_t, Y_t \sim p_{target},$$

a simple function, e.g., 0

1. Time-reversal sampler

Want a sample process (prior to target), To be the time-reversal, of a simple process (target to prior)

1. Time-reversal sampler

This includes

- (1) DDS (denoising diffusion sampler)
- (2) PIS (path integral sampler)
- (3) DIS (diffusion time-reversal sampler)
- (4) GFlowNet (generative flow network)
- (5) iDEM (iterated denoising energy matching)
- (6) RDMC (reversal diffusion monte carlo)
- (7) PINN (physics-informed neural networks) sampler

Any other ways?

2. Escorted transport sampler

2. Escorted transport sampler

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}$$

Want: $X_T \sim p_{\text{target}}$

2. Escorted transport sampler

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}$$
,

define a sequence of interpolants π_t : $\pi_0 = p_{\text{prior}}, \pi_T = p_{\text{target}}$

2. Escorted transport sampler

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

define a sequence of interpolants π_t : $\pi_0 = p_{\text{prior}}, \pi_T = p_{\text{target}}$

If marginal of
$$X_t \sim \pi_t$$
 \longrightarrow $X_T \sim p_{target}$

2. Escorted transport sampler

Want a sample process (prior to target),

 $dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$

define a sequence of interpolants π_t : $\pi_0 = p_{\text{prior}}, \pi_T = p_{\text{target}}$

If marginal of $X_t \sim \pi_t$ \longrightarrow $X_T \sim p_{target}$

2. Escorted transport sampler

Want a sample process (prior to target),

 $\mathrm{d}X_t = f_\theta(X_t, t)\mathrm{d}t + \sigma\sqrt{2}\mathrm{d}W_t, X_0 \sim p_{\mathrm{prior}},$

whose marginal densities aligns with

define a sequence of interpolants π_t : $\pi_0 = p_{\text{prior}}, \pi_T = p_{\text{target}}$

If marginal of $X_t \sim \pi_t$ \longrightarrow $X_T \sim p_{target}$

2. Escorted transport sampler

Want a sample process (prior to target),

 $dX_t = f_{\theta}(X_t, t)dt + \sigma \sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$

whose marginal densities aligns with

define a sequence of interpolants π_t : $\pi_0 = p_{prior}$, $\pi_T = p_{target}$ pre-defined interpolants between prior and target

If marginal of $X_t \sim \pi_t$ \longrightarrow $X_T \sim p_{target}$

2. Escorted transport sampler

This includes

- (1) CMCD (Controlled Monte Carlo Diffusions)
- (2) NETS (non-equilibrium transport sampler)
- (3) PINN (physics-informed neural networks) sampler
- (4) LFIS (Liouville Flow Importance Sampler)

• • •

Any other ways?

3. Annealed variance reduction sampler
3. Annealed variance reduction sampler

$$dX_t = f_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}$$

Want: $X_T \sim p_{\text{target}}$

3. Annealed variance reduction sampler

Want: $X_T \sim p_{\text{target}}$

3. Annealed variance reduction sampler

 $X_T \neq p_{\text{target}}$

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}},$$

$$dX_t = g(X_t, t)dt + \sigma\sqrt{2}dW_t^t, X_T \sim p_{\text{target}},$$

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}, \quad \clubsuit \quad \vec{\mathbf{Q}}(X)$$

$$dX_t = g(X_t, t)dt + \sigma\sqrt{2}dW_t^t, X_T \sim p_{\text{target}}, \implies \overleftarrow{\mathbf{P}}(X)$$

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}, \quad \clubsuit \quad \vec{\mathbf{Q}}(X)$$

$$dX_t = g(X_t, t)dt + \sigma\sqrt{2}dW_t^t, X_T \sim p_{\text{target}}, \implies \overleftarrow{\mathbf{P}}(X)$$

Importance weight:
$$\frac{d\vec{\mathbf{Q}}(X)}{d\dot{\mathbf{P}}(X)}$$

$$dX_t = f(X_t, t)dt + \sigma\sqrt{2}dW_t, X_0 \sim p_{\text{prior}}, \quad \clubsuit \quad \vec{\mathbf{Q}}(X)$$

$$dX_t = g_{\theta}(X_t, t)dt + \sigma\sqrt{2}dW_t^t, X_T \sim p_{\text{target}}, \implies \overleftarrow{\mathbf{P}_{\theta}}(X)$$

Importance weight:
$$\frac{\mathrm{d}\vec{\mathbf{Q}}(X)}{\mathrm{d}\overleftarrow{\mathbf{P}_{\theta}}(X)}$$

Align

$$dX_{t} = f(X_{t}, t)dt + \sigma\sqrt{2}dW_{t}, X_{0} \sim p_{\text{prior}}, \quad \clubsuit \quad \vec{\mathbf{Q}}(X)$$

$$dX_{t} = g_{\theta}(X_{t}, t)dt + \sigma\sqrt{2}dW_{t}^{t}, X_{T} \sim p_{\text{target}}, \quad \clubsuit \quad \overleftarrow{\mathbf{P}_{\theta}}(X)$$

Importance weight:
$$\frac{\mathrm{d}\vec{\mathbf{Q}}(X)}{\mathrm{d}\overleftarrow{\mathbf{P}_{\theta}}(X)}$$

Align
Align

$$dX_{t} = f(X_{t}, t)dt + \sigma\sqrt{2}dW_{t}, X_{0} \sim p_{\text{prior}}, \quad \Rightarrow \quad \vec{\mathbf{Q}}(X)$$

$$dX_{t} = g_{\theta}(X_{t}, t)dt + \sigma\sqrt{2}dW_{t}^{t}, X_{T} \sim p_{\text{target}}, \quad \Rightarrow \quad \overleftarrow{\mathbf{P}_{\theta}}(X)$$
Small variance
Importance weight:
$$\frac{d\vec{\mathbf{Q}}(X)}{d\overleftarrow{\mathbf{P}_{\theta}}(X)}$$

3. Annealed variance reduction sampler

Predefine a sample process (prior to target),

 $dX_{t} = f(X_{t}, t)dt + \sigma\sqrt{2}dW_{t}, X_{0} \sim p_{\text{prior}}, \quad \blacksquare \quad \mathbf{Q}(X)$ $dX_{t} = g_{\theta}(X_{t}, t)dt + \sigma\sqrt{2}dW_{t}^{t}, X_{T} \sim p_{\text{target}}, \quad \blacksquare \quad \mathbf{P}_{\theta}(X)$

variance wriance weight: $\frac{d\vec{Q}(X)}{d\dot{P}_{\theta}(X)}$

3. Annealed variance reduction sampler

Predefine a sample process (prior to target),

define or train a backward process (target to prior),

 $dX_t = g_{\theta}(X_t, t)dt + \sigma \sqrt{2} dW_t^t, X_T \sim p_{\text{target}}, \implies \overleftarrow{\mathbf{P}_{\theta}}(X)$

Small variance

3. Annealed variance reduction sampler

Predefine a sample process (prior to target),

define or train a backward process (target to prior),

 $dX_t = g_{\theta}(X_t, t)dt + \sigma \sqrt{2} dW_t^t, X_T \sim p_{\text{target}}, \implies \overleftarrow{\mathbf{P}_{\theta}}(X)$ perform importance sampling

Small variance

3. Annealed variance reduction sampler

This includes

- (1) AIS (Annealed Importance Sampling)
- (2) MCD (Monte Carlo Diffusion)
- (3) LDVI (Langevin Diffusion Variational Inference)

• • •

1. Time-reversal sampler

2. Escorted transport sampler

1. Time-reversal sampler

2. Escorted transport sampler

3. Annealed variance reduction sampler

These are design choices for the sampling processes

1. Time-reversal sampler

- 2. Escorted transport sampler
- 3. Annealed variance reduction sampler

These are design choices for the sampling processes But **how to train them?**

1. Time-reversal sampler

- 2. Escorted transport sampler
- 3. Annealed variance reduction sampler

These are design choices for the sampling processes But **how to train them?**

a. path-measure alignment

a. path-measure alignment

For any desired process $\vec{\mathbf{Q}}(X)$ or $\vec{\mathbf{Q}}_{\boldsymbol{\theta}}(X)$

a. path-measure alignment

```
For any desired process \vec{\mathbf{Q}}(X) or \vec{\mathbf{Q}}_{\boldsymbol{\theta}}(X)
```

we can write down its desired time-reversal $\overleftarrow{\mathbf{P}}(X)$ or $\overleftarrow{\mathbf{P}}_{\theta}(X)$,

a. path-measure alignment

For any desired process
$$\vec{\mathbf{Q}}(X)$$
 or $\vec{\mathbf{Q}}_{\theta}(X)$
we can write down its desired time-reversal $\overleftarrow{\mathbf{P}}(X)$ or $\overleftarrow{\mathbf{P}_{\theta}}(X)$, $\overset{\text{align}}{\longrightarrow}$

a. path-measure alignment

$$D_{\mathrm{KL}}[\vec{\mathbf{Q}}||\mathbf{\overleftarrow{P}}] = \mathrm{E}_{\vec{\mathbf{Q}}}\left[\log\frac{\mathrm{d}\vec{\mathbf{Q}}(X)}{\mathrm{d}\mathbf{\overleftarrow{P}}(X)}\right]$$

$$D_{\mathrm{LV}}[\vec{\mathbf{Q}}||\mathbf{\widetilde{P}}] = \mathrm{Var}_{\vec{\pi}} \left[\log \frac{\mathrm{d}\vec{\mathbf{Q}}(X)}{\mathrm{d}\mathbf{\widetilde{P}}(X)} \right]$$

$$D_{\rm TB}[\vec{\mathbf{Q}}||\overleftarrow{\mathbf{P}}] = \mathbf{E}_{\vec{\pi}} \left[\left(\log \frac{\mathrm{d}\vec{\mathbf{Q}}(X)}{\mathrm{d}\overleftarrow{\mathbf{P}}(X)} - k \right)^2 \right]$$

Other choices exist, including sub-TB, DB, etc...

b. marginal alignment

b. marginal alignment

For any desired process $\vec{\mathbf{Q}}(X)$ or $\vec{\mathbf{Q}}_{\boldsymbol{\theta}}(X)$

b. marginal alignment

For any desired process $\vec{\mathbf{Q}}(X)$ or $\vec{\mathbf{Q}}_{\boldsymbol{\theta}}(X)$

we can write down its desired marginal $q_t(X_t)$,

b. marginal alignment

For any desired process
$$\vec{\mathbf{Q}}(X)$$
 or $\vec{\mathbf{Q}}_{\boldsymbol{\theta}}(X)$

align

we can write down its desired marginal $q_t(X_t)$,

b. marginal alignment

Score matching with Score estimator

PINN

...

Action matching

	Time-reversal sampler	Escorted transport sampler	Annealed Variance Reduction Sampler
Path measure alignment	DDS, DIS, PIS, GFN	CMCD, SLCD	MCD
Marginal alignment	iDEM, RDMC, PINN- sampler	NETS, PINN- sampler, LFIS	

Let's look at the loss again, for example:

Let's look at the loss again, for example:

$$D_{\mathrm{KL}}[\vec{\mathbf{Q}}||\overleftarrow{\mathbf{P}}] = \mathrm{E}_{\vec{\mathbf{Q}}}\left[\log\frac{\mathrm{d}\vec{\mathbf{Q}}(X)}{\mathrm{d}\overleftarrow{\mathbf{P}}(X)}\right]$$

$$D_{\mathrm{LV}}[\vec{\mathbf{Q}}||\overleftarrow{\mathbf{P}}] = \mathrm{Var}_{\vec{\pi}}\left[\log\frac{\mathrm{d}\vec{\mathbf{Q}}(X)}{\mathrm{d}\overleftarrow{\mathbf{P}}(X)}\right]$$

$$D_{\rm TB}[\vec{\mathbf{Q}}||\overleftarrow{\mathbf{P}}] = E_{\vec{\pi}} \left[\left(\log \frac{\mathrm{d}\vec{\mathbf{Q}}(X)}{\mathrm{d}\overleftarrow{\mathbf{P}}(X)} - k \right)^2 \right]$$

Let's look at the loss again, for example:

$$D_{\mathrm{KL}}[\vec{\mathbf{Q}}||\vec{\mathbf{P}}] = \mathbf{F}_{\vec{\mathbf{Q}}} \left[\log \frac{\mathrm{d}\vec{\mathbf{Q}}(X)}{\mathrm{d}\vec{\mathbf{P}}(X)}\right]$$
$$D_{\mathrm{LV}}[\vec{\mathbf{Q}}||\vec{\mathbf{P}}] = \mathrm{Var}_{\vec{\pi}} \left[\log \frac{\mathrm{d}\vec{\mathbf{Q}}(X)}{\mathrm{d}\vec{\mathbf{P}}(X)}\right]$$

$$D_{\rm TB}[\vec{\mathbf{Q}}||\mathbf{\overleftarrow{P}}] = \mathbf{\overleftarrow{R}} \left[\left(\log \frac{\mathrm{d}\vec{\mathbf{Q}}(X)}{\mathrm{d}\mathbf{\overleftarrow{P}}(X)} - k \right)^2 \right]$$

Let's look at the loss again, for example:

$$D_{\mathrm{KL}}[\vec{\mathbf{Q}}||\vec{\mathbf{P}}] = \mathbf{F}_{\vec{\mathbf{Q}}} \left[\log \frac{\mathrm{d}\vec{\mathbf{Q}}(X)}{\mathrm{d}\vec{\mathbf{P}}(X)}\right]$$
$$D_{\mathrm{LV}}[\vec{\mathbf{Q}}||\vec{\mathbf{P}}] = \mathrm{Var}_{\vec{\pi}} \left[\log \frac{\mathrm{d}\vec{\mathbf{Q}}(X)}{\mathrm{d}\vec{\mathbf{P}}(X)}\right]$$
$$D_{\mathrm{TB}}[\vec{\mathbf{Q}}||\vec{\mathbf{P}}] = \mathbf{F}_{\vec{\pi}} \left[\left(\log \frac{\mathrm{d}\vec{\mathbf{Q}}(X)}{\mathrm{d}\vec{\mathbf{P}}(X)} - k\right)^{2}\right]$$

e need to simulate the trajectory – expensive!

Let's look at the loss again, for example:

$$D_{\mathrm{KL}}[\vec{\mathbf{Q}}||\vec{\mathbf{P}}] = \mathbf{F}_{\vec{\mathbf{Q}}} \left[\log \frac{\mathrm{d}\vec{\mathbf{Q}}(X)}{\mathrm{d}\vec{\mathbf{P}}(X)}\right]$$
$$D_{\mathrm{LV}}[\vec{\mathbf{Q}}||\vec{\mathbf{P}}] = \mathrm{Var}_{\vec{\pi}} \left[\log \frac{\mathrm{d}\vec{\mathbf{Q}}(X)}{\mathrm{d}\vec{\mathbf{P}}(X)}\right]$$
$$D_{\mathrm{TB}}[\vec{\mathbf{Q}}||\vec{\mathbf{P}}] = \mathbf{F}_{\vec{\pi}} \left[\left(\log \frac{\mathrm{d}\vec{\mathbf{Q}}(X)}{\mathrm{d}\vec{\mathbf{P}}(X)} - k\right)^{2}\right]$$

event to simulate the trajectory – expensive!
Any ways for "simulation-free" training?

Simulation-free training of Diffusion Neural samplers

Simulation-free training of Diffusion Neural samplers

avoid simulating the trajectory (entirely) during training.

Simulation-free training of Diffusion Neural samplers

avoid simulating the trajectory (entirely) during training.

wing a time-dependent normalizing flow
avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define $F_{\theta}(\cdot, t)$ as an invertible function

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define $F_{\theta}(\cdot, t)$ as an invertible function

The first way of sampling

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define $F_{\theta}(\cdot, t)$ as an invertible function

The first way of sampling $X_t = F_{\theta}(Z, t), \quad Z \sim p_{\text{base}}$

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define $F_{\theta}(\cdot, t)$ as an invertible function

The first way of sampling $X_t = F_{\theta}(Z, t), \quad Z \sim p_{\text{base}}$

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define $F_{\theta}(\cdot, t)$ as an invertible function

The first way of sampling $X_t = F_{\theta}(Z, t), \quad Z \sim p_{\text{base}}$

The second way of sampling $X_0 = F_{\theta}(Z, 0), Z \sim p_{\text{base}}$

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define $F_{\theta}(\cdot, t)$ as an invertible function

The first way of sampling $X_t = F_{\theta}(Z, t), \quad Z \sim p_{\text{base}}$

$$X_0 = F_{\theta}(Z, 0), Z \sim p_{\text{base}}$$
$$dX_t = \partial_t F_{\theta}(Z, t) dt$$

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define $F_{\theta}(\cdot, t)$ as an invertible function

The first way of sampling $X_t = F_{\theta}(Z, t), \quad Z \sim p_{\text{base}}$

$$X_{0} = F_{\theta}(Z, 0), Z \sim p_{\text{base}}$$
$$dX_{t} = \partial_{t} F_{\theta}(Z, t) dt$$
$$Z = F_{\theta}^{-1}(X_{t}, t)$$

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define $F_{\theta}(\cdot, t)$ as an invertible function

The first way of sampling $X_t = F_{\theta}(Z, t), \quad Z \sim p_{\text{base}}$

$$X_0 = F_{\theta}(Z, 0), Z \sim p_{\text{base}}$$
$$dX_t = \partial_t F_{\theta} \left(F_{\theta}^{-1}(X_t, t), t \right) dt$$

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define $F_{\theta}(\cdot, t)$ as an invertible function

The first way of sampling $X_t = F_{\theta}(Z, t), \quad Z \sim p_{\text{base}}$

$$X_{0} = F_{\theta}(Z, 0), Z \sim p_{\text{base}}$$
$$dX_{t} = \underbrace{\partial_{t} F_{\theta} \left(F_{\theta}^{-1}(X_{t}, t), t \right)}_{\text{Standard form of ODE}} dt$$

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define $F_{\theta}(\cdot, t)$ as an invertible function

The first way of sampling $X_t = F_{\theta}(Z, t), \quad Z \sim p_{\text{base}}$

The second way of sampling $X_0 = F_{\theta}(Z, 0), Z \sim p_{\text{base}}$

 dX_t

$$dX_t = \partial_t F_\theta \left(F_\theta^{-1}(X_t, t), t \right) dt$$

= $\partial_t F_\theta \left(F_\theta^{-1}(X_t, t), t \right) dt$ + $\sigma_t \sqrt{2} dW_t$

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define $F_{\theta}(\cdot, t)$ as an invertible function

The first way of sampling $X_t = F_{\theta}(Z, t), \quad Z \sim p_{\text{base}}$

The second way of sampling $X_0 = F_{\theta}(Z, 0), Z \sim p_{\text{base}}$ $dX_t = \partial_t F_{\theta} (F_{\theta}^{-1}(X_t, t), t) dt$ $dX_t = \partial_t F_{\theta} (F_{\theta}^{-1}(X_t, t), t) dt + \sigma_t^2 \nabla \log q_{\theta}(X_t, t) dt + \sigma_t \sqrt{2} dW_t$

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define $F_{\theta}(\cdot, t)$ as an invertible function

The first way of sampling $X_t = F_{\theta}(Z, t), \quad Z \sim p_{\text{base}}$

The second way of sampling $X_0 = F_{\theta}(Z, 0), Z \sim p_{\text{base}}$ $dX_t = \partial_t F_{\theta} \left(F_{\theta}^{-1}(X_t, t), t \right) dt$ Easily obtained by NF $dX_t = \partial_t F_{\theta} \left(F_{\theta}^{-1}(X_t, t), t \right) dt + \sigma_t^2 \nabla \log q_{\theta}(X_t, t) dt + \sigma_t \sqrt{2} dW_t$

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define $F_{\theta}(\cdot, t)$ as an invertible function

The first way of sampling $X_t = F_{\theta}(Z, t), \ Z \sim p_{\text{base}}$ directly sample from time t

The second way of sampling $X_0 = F_{\theta}(Z, 0), Z \sim p_{\text{base}}$ $dX_t = \partial_t F_{\theta} (F_{\theta}^{-1}(X_t, t), t) dt$ $dX_t = \partial_t F_{\theta} (F_{\theta}^{-1}(X_t, t), t) dt + \sigma_t^2 \nabla \log q_{\theta}(X_t, t) dt + \sigma_t \sqrt{2} dW_t$

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define $F_{\theta}(\cdot, t)$ as an invertible function

The first way of sampling $X_t = F_{\theta}(Z, t), \quad Z \sim p_{\text{base}}$ directly sample from time tThe second way of sampling $X_0 = F_{\theta}(Z, 0), Z \sim p_{\text{base}}$ Calculate the same loss $dX_t = \partial_t F_{\theta} (F_{\theta}^{-1}(X_t, t), t) dt$ as other diffusion samplers $dX_t = \partial_t F_{\theta} (F_{\theta}^{-1}(X_t, t), t) dt + \sigma_t^2 \nabla \log q_{\theta}(X_t, t) dt + \sigma_t \sqrt{2} dW_t$

 $\mathrm{d}X_t = \partial_t F_\theta \left(F_\theta^{-1}(X_t, t), t \right) \mathrm{d}t + \sigma_t^2 \nabla \log q_\theta(X_t, t) \mathrm{d}t + \sigma_t \sqrt{2} \mathrm{d}W_t, X_0 \sim p_{\mathrm{prior}}$

Align $dX_t = \partial_t F_\theta \left(F_\theta^{-1}(X_t, t), t \right) dt + \sigma_t^2 \nabla \log q_\theta(X_t, t) dt + \sigma_t \sqrt{2} dW_t, X_0 \sim p_{\text{prior}}$ $dX_t = g(X_t) dt + \sigma_t \sqrt{2} dW_t^{-}, X_T \sim p_{\text{target}}$

a simple function, e.g., 0

Align

$$dX_{t} = \partial_{t}F_{\theta}(F_{\theta}^{-1}(X_{t}, t), t)dt + \sigma_{t}^{2}\nabla\log q_{\theta}(X_{t}, t)dt + \sigma_{t}\sqrt{2}dW_{t}, X_{0} \sim p_{\text{prior}}$$
time-reversal

$$dX_{t} = \partial_{t}F_{\theta}(F_{\theta}^{-1}(X_{t}, t), t)dt - \sigma_{t}^{2}\nabla\log q_{\theta}(X_{t}, t)dt + \sigma_{t}\sqrt{2}dW_{t}^{-}, X_{T} \sim q_{\theta}(\cdot, T)$$

$$dX_{t} = \underbrace{g(X_{t})dt}_{t} + \sigma_{t}\sqrt{2}dW_{t}^{-}, X_{T} \sim p_{\text{target}}$$
a simple function, e.g., 0

$$dX_{t} = \partial_{t}F_{\theta}(F_{\theta}^{-1}(X_{t}, t), t)dt + \sigma_{t}^{2}\nabla\log q_{\theta}(X_{t}, t)dt + \sigma_{t}\sqrt{2}dW_{t}, X_{0} \sim p_{\text{prior}}$$

time-reversal
$$dX_{t} = \partial_{t}F_{\theta}(F_{\theta}^{-1}(X_{t}, t), t)dt - \sigma_{t}^{2}\nabla\log q_{\theta}(X_{t}, t)dt + \sigma_{t}\sqrt{2}dW_{t}^{-}, X_{T} \sim q_{\theta}(\cdot, T)$$
$$dX_{t} = \underbrace{g(X_{t})dt}_{t} + \sigma_{t}\sqrt{2}dW_{t}^{-}, X_{T} \sim p_{\text{target}}$$
a simple function, e.g., 0

Align

$$dX_{t} = \partial_{t}F_{\theta}(F_{\theta}^{-1}(X_{t}, t), t)dt + \sigma_{t}^{2}\nabla \log q_{\theta}(X_{t}, t)dt + \sigma_{t}\sqrt{2}dW_{t}, X_{0} \sim p_{\text{prior}}$$

time-reversal
$$dX_{t} = \partial_{t}F_{\theta}(F_{\theta}^{-1}(X_{t}, t), t)dt - \sigma_{t}^{2}\nabla \log q_{\theta}(X_{t}, t)dt + \sigma_{t}\sqrt{2}dW_{t}^{-}, X_{T} \sim q_{\theta}(\cdot, T)$$

Align
$$dX_{t} = \underbrace{g(X_{t})dt}_{X_{t}} + \sigma_{t}\sqrt{2}dW_{t}^{-}, X_{T} \sim p_{\text{target}}$$

a simple function, e.g., 0

same direction – Girsanov Theorem applicable

$$dX_{t} = \partial_{t}F_{\theta}(F_{\theta}^{-1}(X_{t}, t), t)dt + \sigma_{t}^{2}\nabla \log q_{\theta}(X_{t}, t)dt + \sigma_{t}\sqrt{2}dW_{t}, X_{0} \sim p_{\text{prior}}$$

time-reversal
$$dX_{t} = \partial_{t}F_{\theta}(F_{\theta}^{-1}(X_{t}, t), t)dt - \sigma_{t}^{2}\nabla \log q_{\theta}(X_{t}, t)dt + \sigma_{t}\sqrt{2}dW_{t}^{-}, X_{T} \sim q_{\theta}(\cdot, T)$$

Align
$$dX_{t} = \underbrace{g(X_{t})dt}_{X_{t}} + \sigma_{t}\sqrt{2}dW_{t}^{-}, X_{T} \sim p_{\text{target}}$$

a simple function, e.g., 0

same direction – Girsanov Theorem applicable

simulation-free evaluation – can always obtain sample by 1-step $X_t = F_{\theta}(Z, t), Z \sim p_{\text{base}}$

Great! How does it perform?

😢 unfortunately...

initialization

Great! How does it perform?

😢 unfortunately...

initialization

Why?

initialization

Why?

Objective? 알 same as DDS

initialization

Why?

Objective? 🕝 same as DDS Capacity? 🝚 target is so simple

initialization

Why?

Objective? 알 same as DDS

Capacity? 알 target is so simple

Network parameterization? 😵 might be the reason

initialization

a. DDS/PIS

warm-up initialization

 $f_{\theta}(\cdot, t) = \mathrm{NN}_{1,\theta}(\cdot, t) + \mathrm{NN}_{2,\theta}(t) \circ \nabla \log p_{\mathrm{target}}(\cdot)$ ≈ 0

a. DDS/PIS

warm-up initialization

 $f_{\theta}(\cdot, t) = NN_{1,\theta}(\cdot, t) + NN_{2,\theta}(t) \circ \nabla \log p_{\text{target}}(\cdot)$ $\approx 0 \qquad \qquad \text{Langevin gradient}$

b. CMCD/NETS $\pi_t(\cdot) = p_{\text{prior}}^{1-\beta}(\cdot)p_{\text{target}}^{\beta}(\cdot)$ Langevin gradient $dX_t = (f_{\theta}(X_t, t) + \sigma_t^2 \nabla \log \pi_t(X_t))dt + \sqrt{2} \sigma_t dW_t$ $\overrightarrow{\mathbf{Q}_{\theta}}(X)$

$$dX_t = (f_{\theta}(X_t, t) - \sigma_t^2 \nabla \log \pi_t(X_t))dt + \sqrt{2} \sigma_t dW_t^- \qquad \overleftarrow{\mathbf{P}_{\theta}}(X)$$

What if we remove this Langevin? $\mathbf{P}_A(X)$

How to remove Langevin?

a. DDS

$$f_{\theta}(\cdot, t) = \mathrm{NN}_{1,\theta}(\cdot, t) + \mathrm{NN}_{2,\theta}(t) \circ \nabla \log p_{\mathrm{target}}(\cdot)$$

b. CMCD's Optimality condition (Nelson's relation)

$$D(\overline{\mathbf{Q}_{\theta}^{p_{\text{prior},f_{\theta}+\sigma_{t}^{2}\nabla\log\pi_{t}}}, \overline{\mathbf{P}_{\theta}^{p_{\text{target},f_{\theta}-\sigma_{t}^{2}\nabla\log\pi_{t}}})$$

But it is not necessary!

$$D(\overline{\mathbf{Q}_{\theta}^{p_{\text{prior},f_{\theta}}}}, \overline{\mathbf{P}_{\theta}^{p_{\text{target},f_{\theta}-2\sigma_{t}^{2}\nabla\log\pi_{t}}})$$

Empirical Results

a. Langevin precondition is necessary to prevent mode collapse

Empirical Results

a. Langevin precondition is necessary to prevent mode collapse

Empirical Results

b. Does other ways of incorporating the target information help?

b. Do other ways of incorporating the target information help?

w/o LG, w. distil init

0

40

TB

0

-40

-40

DDS w/o Langevin for GMM-3:

TΒ

c. How about sample efficiency?

Figure 2: Sample quality vs target evaluation times for different approaches with different objectives on GMM-40 target. *NETS uses mode interpolation, which is distinct from that employed in others.

d. PINN objective is different

- 1. different interpolant
- 2. different prior size
- 3. "consistent" behavior

SOTA MCMC in MD simulation

알 Highly parallel

Figure 2: Sample quality vs target evaluation times for different approaches with different objectives on GMM-40 target. *NETS uses mode interpolation, which is distinct from that employed in others.

1. We should not hide Langevin gradient used

1. We **should not hide Langevin** gradient used

2. If we need Langevin gradient anyway, we need to **talk about sample efficiency** (we should also be open to initialize using data)

1. We **should not hide Langevin** gradient used

2. If we need Langevin gradient anyway, we need to **talk about sample efficiency** (we should also be open to initialize using data)

3. Improving **PT** is a promising direction (solve challenges with neural network ansatz)

1. We **should not hide Langevin** gradient used

2. If we need Langevin gradient anyway, we need to **talk about sample efficiency** (we should also be open to initialize using data)

3. Improving **PT** is a promising direction (solve challenges with neural network ansatz)

4. Better prior, interpolant, explorative objectives still needed