
Pursuits and Challenges Towards 
Simulation-free Training of Neural Sampler
Jiajun He & Yuanqi Du
@MILA Sampling Reading Group

Collaborators and Supervisors:

Francisco Vargas, Dinghuai Zhang, Shreyas Padhy, RuiKang OuYang, Carla Gomes, José Miguel Hernández-Lobato



Sampling
Unnormalized density function:

𝑝target 𝑥 =
𝑝 𝑥

𝑍
, 𝑍 = ∫ 𝑝 𝑥 d𝑥

Obtain sample 𝑥 ∼ 𝑝target.



Sampling
Unnormalized density function:

𝑝target 𝑥 =
𝑝 𝑥

𝑍
, 𝑍 = ∫ 𝑝 𝑥 d𝑥

Obtain sample 𝑥 ∼ 𝑝target.

Bayesian inference: 𝑝target ∝ likelihood × prior



Sampling
Unnormalized density function:

𝑝target 𝑥 =
𝑝 𝑥

𝑍
, 𝑍 = ∫ 𝑝 𝑥 d𝑥

Obtain sample 𝑥 ∼ 𝑝target.

Bayesian inference: 𝑝target ∝ likelihood × prior

Boltzmann distribution (molecules, etc): 𝑝target ∝ exp(−𝛽𝑈)



Sampling
Unnormalized density function:

𝑝target 𝑥 =
𝑝 𝑥

𝑍
, 𝑍 = ∫ 𝑝 𝑥 d𝑥

Obtain sample 𝑥 ∼ 𝑝target.

Bayesian inference: 𝑝target ∝ likelihood × prior

Boltzmann distribution (molecules, etc): 𝑝target ∝ exp(−𝛽𝑈)

Rare event: 𝑝target(𝑥) ∝ 𝟏𝐵(𝑥)𝑝(𝑥)
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Sampling – classical approach
Markov chain Monte Carlo (MCMC)

For example, unadjusted Langevin dynamics:

d𝑋𝑡 = ∇log 𝑝 𝑋𝑡 d𝑡 + 2d𝑊𝑡

dependent samples; auto-correlation reduces efficiency sample size
ergodicity; only guarantee convergence with infinite steps
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Neural samplers
Train a neural network to amortize the sampling process

independent samples!
can mix in finite time

Neural samplers are in fact generative models:

𝑝prior 𝑝target

generative model
NF, Diffusion, etc. 
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1. Time-reversal sampler   

This includes
(1) DDS (denoising diffusion sampler)
(2) PIS (path integral sampler)
(3) DIS (diffusion time-reversal sampler)
(4) GFlowNet (generative flow network)
(5) iDEM (iterated denoising energy matching)
(6) RDMC (reversal diffusion monte carlo)
(7) PINN (physics-informed neural networks) sampler

…
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This includes
(1) CMCD (Controlled Monte Carlo Diffusions)
(2) NETS (non-equilibrium transport sampler)
(3) PINN (physics-informed neural networks) sampler
(4) LFIS (Liouville Flow Importance Sampler)

…
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Predefine a sample process (prior to target),

   define or train a backward process (target to prior),

                                                                                          perform importance sampling



This includes
(1) AIS (Annealed Importance Sampling)
(2) MCD (Monte Carlo Diffusion)
(3) LDVI (Langevin Diffusion Variational Inference)

…
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Other choices exist, including sub-TB, DB, etc…
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Score matching with Score estimator

PINN 

Action matching

…
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Time-reversal 
sampler

Escorted transport 
sampler

Annealed Variance 
Reduction Sampler

Path measure 
alignment

DDS, DIS, PIS, GFN CMCD, SLCD MCD

Marginal alignment iDEM, RDMC, PINN-
sampler

NETS, PINN-
sampler, LFIS
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simulation-free evaluation – can always obtain sample by 1-step 𝑋𝑡 = 𝐹𝜃 𝑍, 𝑡 , 𝑍 ∼ 𝑝base
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Simulation-free training of Diffusion Neural samplers 

initialization after training

Why?

Objective?  same as DDS 

Capacity?  target is so simple

Network parameterization? might be the reason
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b. CMCD/NETS
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𝑑𝑋𝑡 =  (𝑓𝜃 𝑋𝑡 , 𝑡 − 𝜎𝑡
2∇ log 𝜋𝑡 𝑋𝑡 )𝑑𝑡 + 2 𝜎𝑡𝑑𝑊𝑡
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⋅ 𝑝target
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What if we remove this Langevin?



How to remove Langevin?

b. CMCD’s Optimality condition (Nelson’s relation)

𝑫(𝐐
𝜽

𝒑
𝐩𝐫𝐢𝐨𝐫, 𝑓𝜃+𝜎𝑡

2∇ log 𝜋𝑡 , 𝐏
𝜃

𝒑
𝐭𝐚𝐫𝐠𝐞𝐭, 𝑓𝜃−𝜎𝑡

2∇ log 𝜋𝑡 )

𝑫(𝐐
𝜽

𝒑𝐩𝐫𝐢𝐨𝐫, 𝑓𝜃 , 𝐏
𝜃

𝒑
𝐭𝐚𝐫𝐠𝐞𝐭, 𝑓𝜃−2𝜎𝑡

2∇ log 𝜋𝑡 )

But it is not necessary!

a. DDS

𝑓𝜃 ⋅, 𝑡 = NN1,𝜃 ⋅, 𝑡 + NN2,𝜃 𝑡 ∘ ∇ log 𝑝target(⋅)
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Empirical Results

DDS w/o Langevin for GMM-3:

KL                                                                LV                                                         TB 



Empirical Results
c. How about sample efficiency?



Empirical Results
d. PINN objective is different

1. different interpolant
2. different prior size
3. “consistent” behavior



Parallel Tempering/Replica Exchange

SOTA MCMC in MD simulation

 Highly parallel 

high temperature
𝑝target

1/temp

low temperature
𝑝target



Parallel Tempering/Replica Exchange

Correlated samples

Need more simulation for new samples 
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Parallel Tempering/Replica Exchange

Correlated samples

Need more simulation for new samples 

Generative models can easily address them!
But is it worth it? 

Different use from neural samplers…
high temperature
𝑝target

1/temp

low temperature
𝑝target



Parallel Tempering/Replica Exchange

high temperature
𝑝target

1/temp

low temperature
𝑝target



Discussion & Takeaway

1. We should not hide Langevin gradient used

2. If we need Langevin gradient anyway, we need to talk about sample 
efficiency (we should also be open to initialize using data)

3. Improving PT is a promising direction (solve challenges with neural 
network ansatz)

4. Better prior, interpolant, explorative objectives still needed
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