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Motivation

Sampling from probability densities
is a fundamental task in:

e Machine learning
e Bayesian inference
e Molecular dynamics
e Free energy estimation




Motivation: MCMC

MCMC is a standard tool for sampling, providing mathematical guarantees
Standard MCMC methods (MALA/HMC) rely on local moves

e Suffers from mode-mixing issues leading to slow convergence
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Motivation: Neural Samplers

Recent interest in leveraging advances in generative modelling for sampling
e \We do not have access to data but can access the target density
e The cost of sampling is amortised by the trained neural network
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Motivation: Neural Samplers

Despite the attractiveness of neural samplers, they suffer from foundational issues
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Motivation: Neural Samplers

e Lack of mathematical guarantees

e Expensive training

e Reliance on Langevin preconditioning

e Prone to mode dropping/instability

He et al. (2025) No Trick, No Treat:
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Figure 2: Sample quality vs target evaluation times
for different approaches with different objectives on
GMM-40 target.
which is distinct from that employed in others.
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Pursuits and Challenges Towards Simulation-free Training of Neural Sample



Motivation: Neural Samplers + PT

Parallel Tempering is a state-of-the-art MCMC (meta)-algorithm

Can we combine neural samples with PT?
e Shared use of annealing

e Precedent from SMC-based works
(CRAFT, AFT, Particle Denoising Diffusion Sampler, Sequential Controlled Langevin Diffusions)
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Motivation: Neural Samplers + PT

Modern generative modelling relies on (static/dynamic) transport of measures

Ballard and Jarzynski (2009, 2012) propose incorporating
“non-equilibrium switches” within PT swap moves

Replica exchange with nonequilibrium switches

Andrew J. Ballard® and Christopher Jarzynski®:1

anstitute for Physical Science and Technology, University of Maryland, College Park, MD 20742; and PDepartment of Chemistry and Biochemistry, University of
Maryland, College Park, MD 20742

Edited by Bruce J. Berne, Columbia University, New York, NY, and approved May 7, 2009 (received for review January 14, 2009)



Contributions
e \We formalise and generalise the framework of Ballard and Jarzynski (2009, 2012)
e We show that APT naturally provides efficient normalising constant estimators
e \We provide a theoretical analysis of APT

e We illustrate the design space of APT with different neural samplers +
experiments



Parallel Tempering

We consider a target distribution 7(z) = exp(—-U(x))/Z

e Potential U : X — R

We want to draw samples from 7T to estimate:
e Expectations 7[f] = [, f(z)m(dx)

e Normalising constants Z = [, exp(—U(x))dx



Parallel Tempering

We consider an annealing path of distributions =%, 7*,... "

e 7’ =nis our reference and =" is our target distribution

e E.g. the linear path: =5 o< n!'=#7”
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Parallel Tempering

We define the work between 7"~ tand 7"
- dr™ . —1
Wn(x) = AF, —log 7= (z) = U"(x) — U"" " (x)
and change in free energy

AF, =log Z,,_1 — log Z,



Parallel Tempering

We construct a Markov chain X; = (X?,..., x7) targeting ™ ® ... @ 7"
e Local exploration: update X;* with a ™ -invariant kernel
e Communication: swap Xf’_l, X' with probability

oM(X{ ™ XT) = exp(min{0, W™ (X7) — W™ (X )})
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Non-Reversible Parallel Tempering

For each t, we carry out swaps for the pairs (X} !, Xx)for all 2in {n : n = t(mod 2)}
in parallel

e Results in non-reversible dynamics, avoiding diffusive behaviour
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Round Trips
We measure the efficiency of PT by the round trip rate

This is defined in terms of the induced machine process tracking swaps

(0,1,2,3) — (1,0,3,2) = (1,0,3,2) = (0,1,3,2) — (0,3,1,2) — (3,0,2,1)
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Round Trips

The number of round trips is defined
as the number of times a machine
goes from the reference to the target
and back

This serves as a good
proxy for ESS but
disentangles the
performance of local
exploration
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Rejection Rates

Under simplifying assumptions:
e Stationarity: X, ~ @ ...V

e Efficient local exploration (ELE): For X, ~ K*?(X,,dz), W*(X;~), w™(X - Hare
independent and W"(Xx7), W"(X;)are independent

We can relate the efficiency of PT with the geometry of our path/rejection statistics

(7-(-71—1) n

N n—1 _n !
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Syed et al. (2022) Non-Reversible Parallel Tempering: a Scalable Highly Parallel MCMC Scheme



Geometry of PT

The rejection rate statistics define a divergence J\ M

on our annealing path

r=0 r=1
Moreover, this provides a notion of Local change Global change
geometry which quantifies the intrinsic NB) = lim "B Ta+as) i
difficulty of the sampling problem 5= 83, |AB . _/0 Mp)ae

Theorem: When N is large enough, any annealing schedule satisfies,

We can approximate this geometry
with our rejection rate statistics - / " \B)B, S, ol

Taken from Saif’s slides



Schedule Tuning

This provides a practical algorithm for tuning the annealing schedule
e Provides state-of-the-art performance
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Accelerated Parallel Tempering

We've seen the performance of PT relies critically on the cumulative rejection rates
How can we break this barrier?

One limitation of PT is the inflexibility of the Swap MOVES neruornas ootes o earing e eernce,spmising e smesing e

e Can we take advantage of the flexibility of neural samplers to define
our swap moves?



Forward and Backward Accelerators

We introduce the time-inhomogeneous Markov processes generated
by the forward and backward accelerators P;~',Q7 ,

P (dwoxc) = 77N (dao) [Ty PP Mg, day) Qi (dwo.r) = 7 (deg) [Tiey Q7 (21, )

We analogously define the work between our accelerated paths

d n
W (20.x) = AF™ — log d@a (z0:x)



Non-Reversible Accelerated Parallel Tempering

Standard PT APT
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Figure 1: (Left) An illustration of the local exploration and communication step for PT vs APT.
(Middle) 1,000 samples of a Gaussian mixture model target obtained using PT vs APT with a standard
Gaussian reference. See Section 6.1 for more details. (Right) Round trips for PT and APT with
N = 6 chains over 7" = 100, 000 iterations of Algorithm 1.



Non-Reversible Accelerated Parallel Tempering

We define APT with the same structure as NRPT

Instead we define our swap proposal through generating the paths Xt 0.k » and )?ng;K
Xigh = X7 X~ RN da)

Pe =Xy Xy~ @Ry (X dapa)-

We then propose the new states )?gfo and )?f;{l with probability

o (X5 Xiox) = exp (min {0, Wi (Xro.x) - Wi (X5 )



Expectations and Free Energy Estimation

Expectations:
e By ergodicity (Theorem 1), we have a law of large numbers result for
approximating expectations



Expectations and Free Energy Estimation

Free Energy:
e \We naturally have free energy perturbation/escorted Jarzynski equality
estimators

exp(—AFr): H Z exp (—W}ét) , exp(AFp): H Z exp <W;ét)

n=t mod 2 n= l n=t mod 2

AFT = %(AfT -+ Af{r)

e Moreover, we show our estimators are consistent

Proposition 1. The estimators 74(f] and AFr a.s. converge to ©"(f] and AF respectively as
T — co. Moreover, if P = Q7 for all n, then AFp =" AF.



Algorithm 1 Accelerated Parallel Tempering

1: Initialise Xo = (XQ,..., X{");

2: fokt =1, .. .. T do

3 Xoi= (R 0 : X0 ) X s KX 5di)
4 forn =t mod 2 do

5: X X X XD

6 fork=1,..., Kdo

7
8

?

vn—1 n—17vn—1
Xow ~ P (X, do)

Xk~ Qu_( X7k _g11,d2)

9: end for R .

10: K WEg < W}%(th()—;() Wg(X{o.x)
11: U ~ Uniform([0, 1]) |

12: if logU < W, — W, then

13: X X X X0

14: end if '

15: end for

16: end for

Output: Return: X;,..., X7

> Local exploration move
> Non-reversible communication
> Initialise forward/backward paths

> Accelerate forward

> Accelerate backward

> Work of forward/backward paths

> Accelerated swap move




Analysis of APT

We demonstrate that analogous results from NRPT carry over to APT

e This allows us to carry over schedule tuning to APT

e Moreover, we show in the case of SDE bridges, scaling K improves the
round trip rate



Analysis of APT

Under similar stationarity and ELE assumptions
e The rejection rates induces a divergence on our annealing path
—1 —1 -1
r(Pr ", Q%) = IPx " ® Qk — Qx Pk |lTv
e \We can relate this back to the round trip rate

Proposition 2. [f Assumption | holds, then 7 = (P3N~ QEN) where,

—1
. Pnl(@n)
IPO.N 1 lN : 2+2 K »
T(K ZI—TPKI,Q")




Analysis of APT

We have an analogous notion of geometry for APT

e This allows us to apply the same schedule tuning algorithm from NRPT

Theorem 2. Suppose Pij and Qf{y are sufficiently regular and satisfy Assumptions 2—4 in
Appendix B.3. As N — oo if maxn<n |Bn — Bn-1| = O(N™1), then Z:le r(Pg 3 Q%) converges
to Ay and T(P(};.‘N "I,Q}QN) converges to T = (2 + 2A )1, where Ak equals,

1
Loiissd g . =5 : =p =B 8.8 o BB
Ak 3:/0 §1EHLV£’(X('):K) - Wi (Xox)lld8,  (Xo.xXo.x) ~ Py ® Qg

e} & g x 5 5 X y 8.8’ % y
and Wy - X K+1 5 R is the partial derivative with respect to ' of W K 7 at gi=8



Analysis of APT

We consider the case where our accelerators are given by the K-step discretisation
of an underlying SDE bridging between annealing distributions

Proposition 3. Under appropriate conditions on the drifts of the SDE (Appendix B.2), as K — oo,
T(IP’(}{:N_I, LN converges to T(PEN -1, QLN) and r(P 1, Q%) < r(P%1,Q%) + (9(—\/17)



Normalising Flow Accelerated PT

Normalising flows generate samples through the push-forward of some base
distribution via a differentiable, invertible mapping

e Easily computable Jacobians allow for scalable density-based training
Accelerators: Pln_l(:llo, d:cl) = 5Tn($0)(dx1), Qg(:fl, d:lf()) = 5(Tn)—l(l-1)(d:1:0)
Work: Wi (zg, z1) = U™(z1) — U 1(zp) — log|det VT (zp)|, z1 = T™(x0)

The use of PT allows for flexible 2T = SV SKLP™!. On
training, such as the symmetric KL (T) = 2in=1 (P Qk)



Controlled Monte Carlo Diffusions

Essential idea:

Published as a conference paper at ICLR 2024

TRANSPORT MEETS VARIATIONAL INFERENCE:
CONTROLLED MONTE CARLO DIFFUSIONS

Francisco Vargas®, Shreyas Padhy* Denis Blessing Nikolas Niisken*

University of Cambridge KIT Kings College London
Cambridge, UK Karlsruhe, Germany London, UK
{fav25, sp2058}@cam.ac.uk j18142@kit.edu nik.nuesken@gmx.de

e Fix an annealing path between a reference distribution and

target distribution

e Introduce a control term to ensure the below SDE matches the marginals of

the annealing path

dY; = (6°V Inm(Y:) + Ve (Y2)) dt + V2 d Wy, Yoo

e Training via matching the discretised forward and backward path measures

)ftk+1 thk ( *Vin Wi V(z)tk)(}/tk)Atka 2U2Atk)—|

HNY;’C‘Y;’ﬁl ( 2VIn7Tt/‘c+1 v¢tk+1)(mk+1)Atka202Atk)J



Controlled Monte Carlo Diffusions APT

In our context, we can use CMCD to transport between annealing distribution for
swaps

We use a linear path to bridge annealing distributions where ¢7 € [0,1] is
monotonically increasing and ¢g = 0, ¢} =1

Uz = (1 - gp)U™L + 47U



Controlled Monte Carlo Diffusions APT

We define our accelerators by uniform discretisation of the CMCD SDE

Accelerators: P~ ' (ak-1,dzk) = N(zk—1 — (05, )* VUL _ (wk—1)Ask + bL,_, (Te—1)Ask,2(0y, _)*Ask)
2_1(xk,d:1:k_1) — N(.Tk + ( ) VU” (J‘k)ASk o bn (.’Ek)AQk, ( gk)zASk)

Work: WE(zo.x) = U™ (zk) — U™ H(z0) + Z log PP~ (wh—1,7x) — ) _ log Q1 (e, T—1)

The use of PT allows for flexible 2T = SV SKLP™!. On
training, such as the symmetric KL (T) = 2in=1 Pk Qk)



Diffusion Accelerated PT

We consider a VP-SDE transporting our target distribution to a standard Gaussian

Time-reverse SDE: (X)sci0,1] = (Y1-s)se[0,1]

dXs = [11-sXs + 2715V log WZP(XS)]dS + /271 dW

We define the accelerators as the discritsation of the SDE and the form of the
work is the same as CMCD-APT

We parametrise an energy-based model and iteratively train via score-matching



Comparison of Acceleration Methods

Potential calls per “machine”:

NF-APT: 2

CMCD-APT: max(2, K+1)
Diff-APT: max(2, K+1)
PT: 2

Table 1: PT versus APT with different acceleration methods, targeting a 40-mode Gaussian Mixture
model (GMM) target in 10 dimensions and standard Gaussian reference using N = 6, 10, 30 parallel
chains for 7" = 100, 000 iterations. For each method, we report the round trips (R), round trips
per potential evaluation, denoted as compute-normalised round trips (CN-R), the number of neural
network evaluations per parallel chain every iteration, and A estimated using N = 30 chains.

# Chain N=6 N =10 N =30
Method Neural Call (}) A(l) R(1) CN-R(1) R(f) CN-R(1) R(1) CN-R(})
NF-APT 1 7.198 194 97.0 1655 827.5 2441 1220.5
CMCD-APT (K =1) 2 6911 234 117.0 2126 1063.0 3264  1632.0
CMCD-APT (K = 2) 3 5932 526 175.3 3287 1092.7 4767 1589.0
CMCD-APT (K = 5) 6 4.822 1743 290.5 5525 920.8 6231 1038.5
Diff-APT (K = 1) 2 9.025 375 187.5 1551 T35 2820 1410.0
Diff-APT (K = 2) 3 7.298 748 2493 2064 688.0 3480 1160.0
Diff-APT (K = 5) 6 5.795 1565 260.8 3080 5133 4334 7223
Diff-PT (K = 0) 2 8932 204 102.0 734 367.0 1586 793.0
PT 0 8.346 17 8.5 681 340.5 1888 944.0




Scaling with Dimensions
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Figure 2: Round trip metrics for K -step Diff-APT (K =

1,2,5) and Diff-PT using the true diffusion path, and

Linear-PT targeting GMM-d for d = 2, 10, 50, 100 when

using 30 chains. (Left) Round trip rate against d. (Right)
Compute-normalised round trip rate against d.



Free Energy Estimator
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Figure 3: Estimates of AF for DW4 and ManyWell-32 by PT, CMCD-APT (K = 1,2,5) and
Diff-APT (K = 0, 1, 2, 5) using 1,000 samples. Each box consists of 30 estimates. The black dashed
lines denotes the reference constant AF' ~ 29.660 estimated with PT using 60 chains and 100,000
samples and AF' ~ 164.696 from Midgley et al. [2023] for ManyWell-32.
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Comparing APT with Neural Samplers
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Figure 4: Interatomic distance d;; of 5,000 samples by CMCD, CMCD-APT, Diffusion, Diff-APT
with 30 chains, K = 1, 2,5 on DW4. We take 100,000 samples by PT with 60 chains as ground truth.
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ManyWell-32

Table 2: PT versus APT with different acceleration methods, targeting ManyWell-32 in 32 dimensions
and standard Gaussian reference using N = 5, 10, 30 parallel chains for 7" = 100, 000 iterations.
For each method, we report the round trips (R), round trips per potential evaluation, denoted as
compute-normalised round trips (CN-R), the number of neural network evaluations per parallel chain
every iteration, and A estimated using N = 30 chains.

# Chain N=5 N =10 N =30
Method NeuralCall (}) A(l) R(1) CN-R(1) R(1) CN-R(1) R(1) CN-R(})
CMCD-APT (K = 1) 2 4384 1154 577.0 2802  1401.0 4729  2364.5
CMCD-APT (K = 2) 3 3.827 1587 529.0 3640 1213.3 5544 1848.0
CMCD-APT (K = 5) 6 3.148 2878 479.7 4790 798.3 6678 1113.0
Diff-APT (K = 1) 2 6.663 425 212.5 2402 1201 4398 2199
Diff-APT (K = 2) 3 5225 1387 462.3 4022 1340.7 5894 1964.7
Diff-APT (K = 5) 6 394 3627 604.5 5704 950.7 7634 1272.3
Diff-PT (K = 0) 2 7423 251 1255 1561 780.5 3440 1720
PT 0 5475 550 275 1879 939.5 3733 1866.5




DW-4

Table 3: PT versus APT with different acceleration methods, targeting DW-4 in 10 dimensions
and standard Gaussian reference using N = 5, 10, 30 parallel chains for 7" = 100, 000 iterations.
For each method, we report the round trips (R), round trips per potential evaluation, denoted as
compute-normalised round trips (CN-R), the number of neural network evaluations per parallel chain

every iteration, and A estimated using N = 30 chains.

# Chain N=5 N =10 N =30
Method NeuralCall (}) A(l) R(1) CN-R(1) R(f) CN-R(f) R(1) CN-R(1)
CMCD-APT (K = 1) 2 3173 3020 15100 6407 32035 9456  4728.0
CMCD-APT (K = 2) 3 2671 4239 14130 7549 25163 10538 35127
CMCD-APT (K = 5) 6 2107 6971 11618 9808 16347 12634  2105.7
Diff-APT (K = 1) 2 4565 4331 21655 7397 36985 7729 38645
Diff-APT (K = 2) 3 3810 7187 23957 10176 3392 9176  3058.7
Diff-APT (K = 5) 6 4358 12456 2076 12740 21233 8104 13507
Diff-PT (K = 0) 2 4739 2962 1481 5862 2921 7067 35335
PT 0 4016 2329 11645 5128 2564 7610 3805




