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Motivation
Sampling from probability densities                                                                          
is a fundamental task in:

● Machine learning
● Bayesian inference
● Molecular dynamics
● Free energy estimation



Motivation: MCMC

Standard MCMC methods (MALA/HMC) rely on local moves

● Suffers from mode-mixing issues leading to slow convergence

MCMC is a standard tool for sampling, providing mathematical guarantees 



Motivation: Neural Samplers

Recent interest in leveraging advances in generative modelling for sampling
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● We do not have access to data but can access the target density
● The cost of sampling is amortised by the trained neural network 
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Motivation: Neural Samplers

Despite the attractiveness of neural samplers, they suffer from foundational issues 



Motivation: Neural Samplers

● Lack of mathematical guarantees

He et al. (2025) No Trick, No Treat: Pursuits and Challenges Towards Simulation-free Training of Neural Sample

● Expensive training

● Prone to mode dropping/instability

● Reliance on Langevin preconditioning



Motivation: Neural Samplers + PT

Can we combine neural samples with PT?

Parallel Tempering is a state-of-the-art MCMC (meta)-algorithm 

(CRAFT, AFT, Particle Denoising Diffusion Sampler, Sequential Controlled Langevin Diffusions)

● Precedent from SMC-based works
● Shared use of annealing

Taken from Saif’s slides



Motivation: Neural Samplers + PT

Modern generative modelling relies on (static/dynamic) transport of measures

Ballard and Jarzynski (2009, 2012) propose incorporating 
“non-equilibrium switches” within PT swap moves



Contributions
● We formalise and generalise the framework of Ballard and Jarzynski (2009, 2012)

● We show that APT naturally provides efficient normalising constant estimators

● We provide a theoretical analysis of APT

● We illustrate the design space of APT with different neural samplers + 
experiments



Parallel Tempering

We consider a target distribution    

● Potential  

● Normalising constants 

We want to draw samples from     to estimate:

● Expectations 



Parallel Tempering
We consider an annealing path of distributions 

●          is our reference and      is our target distribution

● E.g. the linear path: 

Taken from Saif’s slides



Parallel Tempering

We define the work between          and 

and change in free energy



Parallel Tempering

Taken from Saif’s slides

We construct a Markov chain                              targeting                

● Local exploration: update       with a      -invariant kernel

● Communication: swap                  with probability 



Non-Reversible Parallel Tempering
For each   , we carry out swaps for the pairs                for all     in 
in parallel 

● Results in non-reversible dynamics, avoiding diffusive behaviour



Round Trips
We measure the efficiency of PT by the round trip rate

This is defined in terms of the induced machine process tracking swaps

N=4

Taken from Saif’s slides



Round Trips

The number of round trips is defined 
as the number of times a machine 
goes from the reference to the target 
and back

This serves as a good 
proxy for ESS but 
disentangles the 
performance of local 
exploration

# Round Trips



Rejection Rates
Under simplifying assumptions: 

● Stationarity: 

● Efficient local exploration (ELE): For                      ,                           are 
independent and                      are independent                           

We can relate the efficiency of PT with the geometry of our path/rejection statistics

Syed et al. (2022) Non-Reversible Parallel Tempering: a Scalable Highly Parallel MCMC Scheme



Geometry of PT

The rejection rate statistics define a divergence 
on our annealing path 

Moreover, this provides a notion of 
geometry which quantifies the intrinsic 
difficulty of the sampling problem

We can approximate this geometry 
with our rejection rate statistics

Taken from Saif’s slides



Schedule Tuning

This provides a practical algorithm for tuning the annealing schedule
● Provides state-of-the-art performance



Accelerated Parallel Tempering

We’ve seen the performance of PT relies critically on the cumulative rejection rates

How can we break this barrier?

One limitation of PT is the inflexibility of the swap moves (other work has looked into learning the reference, optimising the annealing path)

● Can we take advantage of the flexibility of neural samplers to define 
our swap moves?



Forward and Backward Accelerators

We introduce the time-inhomogeneous Markov processes generated 
by the forward and backward accelerators 

We analogously define the work between our accelerated paths



Non-Reversible Accelerated Parallel Tempering



Non-Reversible Accelerated Parallel Tempering
We define APT with the same structure as NRPT

Instead we define our swap proposal through generating the paths 

We then propose the new states                        with probability 



Expectations and Free Energy Estimation

Expectations: 
● By ergodicity (Theorem 1), we have a law of large numbers result for 

approximating expectations



Expectations and Free Energy Estimation

Free Energy:
● We naturally have free energy perturbation/escorted Jarzynski equality 

estimators

● Moreover, we show our estimators are consistent





Analysis of APT
We demonstrate that analogous results from NRPT carry over to APT

● This allows us to carry over schedule tuning to APT 

● Moreover, we show in the case of SDE bridges, scaling K improves the 
round trip rate 



Analysis of APT

Under similar stationarity and ELE assumptions

● The rejection rates induces a divergence on our annealing path 

● We can relate this back to the round trip rate



Analysis of APT

We have an analogous notion of geometry for APT

● This allows us to apply the same schedule tuning algorithm from NRPT



Analysis of APT
We consider the case where our accelerators are given by the K-step discretisation 
of an underlying SDE bridging between annealing distributions



Normalising Flow Accelerated PT
Normalising flows generate samples through the push-forward of some base 
distribution via a differentiable, invertible mapping
● Easily computable Jacobians allow for scalable density-based training

Accelerators:

Work:

The use of PT allows for flexible 
training, such as the symmetric KL



Controlled Monte Carlo Diffusions
Essential idea: 

● Fix an annealing path between a reference distribution and 
target distribution 

● Introduce a control term to ensure the below SDE matches the marginals of 
the annealing path 

● Training via matching the discretised forward and backward path measures



Controlled Monte Carlo Diffusions APT
In our context, we can use CMCD to transport between annealing distribution for 
swaps

We use a linear path to bridge annealing distributions where                  is 
monotonically increasing and 



Controlled Monte Carlo Diffusions APT

We define our accelerators by uniform discretisation of the CMCD SDE

Accelerators:

Work:

The use of PT allows for flexible 
training, such as the symmetric KL



Diffusion Accelerated PT
We consider a VP-SDE transporting our target distribution to a standard Gaussian

Time-reverse SDE:

We parametrise an energy-based model and iteratively train via score-matching

We define the accelerators as the discritsation of the SDE and the form of the 
work is the same as CMCD-APT



Comparison of Acceleration Methods

Potential calls per “machine”:
● NF-APT: 2
● CMCD-APT: max(2, K+1)
● Diff-APT: max(2, K+1)
● PT: 2



Scaling with Dimensions



Free Energy Estimator



Comparing APT with Neural Samplers
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