
Getting free Bits Back from
Rotational Symmetries in LLMs

Jiajun He, Gergely Flamich, José Miguel Hernández-Lobato

University of Cambridge

After pruning LLMs,

 we can further save 3-5% additional bits for free

 in storage and transmission

SliceGPT and bits-back coding

SliceGPT

SliceGPT introduces rotational symmetries:

SliceGPT introduces rotational symmetries:

SliceGPT introduces rotational symmetries:

we can write each transformer block as:

source coding: + x =

“AC way”: + x = +

 =

“bits-back way”: + x = +

 =

“bits-back way”: + x = +

 =

Initial bits

x~P, symmetric P + good code for P

1. Remove the last bit of the initial bitstream.
2. If it’s 0, encode |x|; if 1, encode -|x|.

How to compress |x|, x~P?

Getting free bits back from rotational
symmetries

encode:

encode: start with a weight matrix and some initial bits

Initial bits

encode step 1: rotate weight matrix to a “canonical” direction

Initial bits

encode step 1: rotate weight matrix to a “canonical” direction

Initial bits

i.e., define to be diagnoal

Initial bits

encode step 1: rotate weight matrix to a “canonical” direction

Initial bits

encode step 2: decode a rotation from the bitstream

encode step 2: decode a rotation from the bitstream

Initial bits

encode step 3: rotate weight by the decoded rotation matrix

Initial bits

encode step 3: rotate weight by the decoded rotation matrix

Initial bits

encode step 4: encode the rotated weight matrix

Initial bits

decode:

decode: start with some bits

Initial bits

decode step 1: decode the rotated weight matrix

Initial bits

decode step 2: rotate it to “canonical” direction

Initial bits

decode step 2: rotate it to “canonical” direction

recall we define

Initial bits

decode step 2: rotate it to “canonical” direction

recall we define

,

Initial bits

decode step 2: rotate it to “canonical” direction

recall we define

,

Initial bits

decode step 3: encode the recovered rotation matrix

Initial bits

encoding:

1. rotation to canonical direction

2. decode a rotation

3. rotate weight matrix

4. encode the rotated matrix

decoding:

3. encode the rotation

2. rotate weight to canonical direction

1. decode the rotated matrix

encoding:

1. rotation to canonical direction

2. decode a rotation

3. rotate weight matrix

4. encode the rotated matrix

decoding:

3. encode the rotation

2. rotate weight to canonical direction

1. decode the rotated matrix

😟does rotation need infinite precision?

encoding:

1. rotation to canonical direction

2. decode a rotation

3. rotate weight matrix

4. encode the rotated matrix

decoding:

3. encode the rotation

2. rotate weight to canonical direction

1. decode the rotated matrix

😟does rotation need infinite precision?
😊yes. but just using float16 also works well!

encoding:

1. rotation to canonical direction

2. decode a rotation

3. rotate weight matrix

4. encode the rotated matrix

decoding:

3. encode the rotation

2. rotate weight to canonical direction

1. decode the rotated matrix

😟does rotation need infinite precision?
😊yes. but just using float16 also works well!

encoding:

1. rotation to canonical direction

2. decode a rotation

3. rotate weight matrix

4. encode the rotated matrix

decoding:

3. encode the rotation

2. rotate weight to canonical direction

1. decode the rotated matrix

😟does rotation need infinite precision?
😊yes. but just using float16 also works well!

encoding:

1. rotation to canonical direction

2. decode a rotation

3. rotate weight matrix

4. encode the rotated matrix

decoding:

3. encode the rotation

2. rotate weight to canonical direction

1. decode the rotated matrix

😟does rotation need infinite precision?
😊yes. but just using float16 also works well!

encoding:

1. rotation to canonical direction

2. decode a rotation

3. rotate weight matrix

4. encode the rotated matrix

decoding:

3. encode the rotation

2. rotate weight to canonical direction

1. decode the rotated matrix

😟does rotation need infinite precision?
😊yes. but just using float16 also works well!

encoding:

1. rotation to canonical direction

2. decode a rotation

3. rotate weight matrix

4. encode the rotated matrix

decoding:

3. encode the rotation

2. rotate weight to canonical direction

1. decode the rotated matrix

😟does rotation need infinite precision?
😊yes. but just using float16 also works well!

encoding:

1. rotation to canonical direction

2. decode a rotation

3. rotate weight matrix

4. encode the rotated matrix

decoding:

3. encode the rotation

2. rotate weight to canonical direction

1. decode the rotated matrix

😟does rotation need infinite precision?
😊yes. but just using float16 also works well!

encoding:

1. rotation to canonical direction

2. decode a rotation

3. rotate weight matrix

4. encode the rotated matrix

decoding:

3. encode the rotation

2. rotate weight to canonical direction

1. decode the rotated matrix

😟but there may be numerical error…

encoding:

1. rotation to canonical direction

2. decode a rotation

3. rotate weight matrix

4. encode the rotated matrix

decoding:

3. encode the rotation

2. rotate weight to canonical direction

1. decode the rotated matrix

😟but there may be numerical error…

encoding:

1. rotation to canonical direction

2. decode a rotation

3. rotate weight matrix

4. encode the rotated matrix

decoding:

3. encode the rotation

2. rotate weight to canonical direction

1. decode the rotated matrix

😟but there may be numerical error…

😟but there may be numerical error…
💡We can send correction code if the error is too large!

😟but there may be numerical error…
💡We can send correction code if the error is too large!

Will this correction code becomes too large? NO!

😟but there may be numerical error…
💡We can send correction code if the error is too large!

Will this correction code becomes too large? NO!

Results

Results

Results 3-5% additional bits saving

Results

negligible influence on performance

Encoding and Decoding time

CPU:

GPU:

In summary:

save 3-5% additional bits,
 no influence on performance,

 a little overhead in model loading time

In summary:

save 3-5% additional bits,
 no influence on performance,

In summary:

save 3-5% additional bits,
 no influence on performance,

 a little overhead in model loading/saving time

