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After pruning LLMs, 

             we can further save 3-5% additional bits for free 

    in storage and transmission 



SliceGPT and bits-back coding
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SliceGPT introduces rotational symmetries:

we can write each transformer block as:



source coding:                  + x = 

“AC way”:                          + x =               +

                                               =

“bits-back way”:                 + x =               +

                                                =



“bits-back way”:                 + x =               +

                                                =

Initial bits

x~P, symmetric P + good code for P 

1. Remove the last bit of the initial bitstream. 
2. If it’s 0, encode |x|; if 1, encode -|x|.

How to compress |x|, x~P?
 



Getting free bits back from rotational 
symmetries





encode:



encode: start with a weight matrix and some initial bits

Initial bits
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i.e., define                    to be diagnoal

Initial bits

encode step 1: rotate weight matrix to a “canonical” direction



Initial bits
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encode step 2: decode a rotation from the bitstream
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encode step 4: encode the rotated weight matrix

Initial bits



decode:



decode: start with some bits

Initial bits



decode step 1: decode the rotated weight matrix

Initial bits
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decode step 3: encode the recovered rotation matrix

Initial bits
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Results 3-5% additional bits saving



Results

negligible influence on performance



Encoding and Decoding time

CPU:

GPU:



In summary:

save 3-5% additional bits,
      no influence on performance,

         a little overhead in model loading time



In summary:

save 3-5% additional bits,
 no influence on performance,

     



In summary:

save 3-5% additional bits,
 no influence on performance,

     a little overhead in model loading/saving time


