Training Neural Samplers with Reverse Diffusive KL Divergence

Jiajun He^{1,*}, Wenlin Chen^{1,3,*}, Mingtian Zhang^{2,*}, David Barber², José Miguel Hernández-Lobato¹

¹University of Cambridge, ²University College London, ³Max Planck Institute for Intelligent Systems *Equal contribution

AISTATS

https://arxiv.org/abs/2410.12456

Background

Sampling from ur

 $p_d(x)$

- Bayesian posterio
- Boltzmann distrib
- Easy to evaluate,

Simiulation with

 $p_{ heta}(x)$

Our Method

Diffusive KL Divergence (DiKL)

DiKL Encourages Mode Coverage

Experiments

(a) Ground Truth

(a) Ground Truth

(b) KL

nnormalized density	Reverse
$= \exp(-E(x))/Z$	$\mathrm{KL}(p)$
or outions hard to sample	- Not def
a generative model	
$\approx p_d(x)$	- Mode c

DiKL Gradient Estimator

$$abla_{ heta} ext{DiKL}_{k_t}(p_{ heta} || p_d) =
abla_{ heta} ext{KL}(p_{ heta} * k_t || p_d * k_t)$$

$$= \int p_{ heta}(x_t) \left(
abla_{x_t} \log p_{ heta}(x_t) -
abla_{x_t} \log p_d(x_t) \right) \frac{\partial x_t}{\partial heta} dx_t,$$

 $\min_{\phi} \left\| \right\|$

- Estimating the noisy target score with mixed score identity (MSI)

 $\nabla_{x_t} \log p_d($

(b) R-KL SM

(d) FAB

(c) FAB

(d) iDEM

(e) DiKL (ours)

KL Minimization

$$egin{aligned} &||p_d) = \int (\log p_ heta(x) - \log p_d(x)) p_ heta(x) dx \ &= \int (\log p_ heta(x) + E(x)) p_ heta(x) dx + \log Z, \end{aligned}$$

fined for implicit model

$$p_{ heta}(x) = \int \delta(x - g_{ heta}(z)) p(z) dz.$$

- Mode collapse problem

- Estimating the noisy model score with denoising score matching (DSM)

$$s_{\phi}(x_t) - \nabla_{x_t} \log k(x_t|x) \|_2^2 k(x_t|x) p_{\theta}(x) dx dx_t$$

$$q(x_t) = \int (lpha_t(x +
abla_x \log p_d(x)) - x_t) p_d(x|x_t) dx.$$