
Pursuits and Challenges Towards
Simulation-free Training of Neural Sampler
Jiajun He & Yuanqi Du
@MILA Sampling Reading Group

Collaborators and Supervisors:

Francisco Vargas, Dinghuai Zhang, Shreyas Padhy, RuiKang OuYang, Carla Gomes, José Miguel Hernández-Lobato

Sampling
Unnormalized density function:

𝑝target 𝑥 =
෤𝑝 𝑥

𝑍
, 𝑍 = ∫ ෤𝑝 𝑥 d𝑥

Obtain sample 𝑥 ∼ 𝑝target.

Sampling
Unnormalized density function:

𝑝target 𝑥 =
෤𝑝 𝑥

𝑍
, 𝑍 = ∫ ෤𝑝 𝑥 d𝑥

Obtain sample 𝑥 ∼ 𝑝target.

Bayesian inference: 𝑝target ∝ likelihood × prior

Sampling
Unnormalized density function:

𝑝target 𝑥 =
෤𝑝 𝑥

𝑍
, 𝑍 = ∫ ෤𝑝 𝑥 d𝑥

Obtain sample 𝑥 ∼ 𝑝target.

Bayesian inference: 𝑝target ∝ likelihood × prior

Boltzmann distribution (molecules, etc): 𝑝target ∝ exp(−𝛽𝑈)

Sampling
Unnormalized density function:

𝑝target 𝑥 =
෤𝑝 𝑥

𝑍
, 𝑍 = ∫ ෤𝑝 𝑥 d𝑥

Obtain sample 𝑥 ∼ 𝑝target.

Bayesian inference: 𝑝target ∝ likelihood × prior

Boltzmann distribution (molecules, etc): 𝑝target ∝ exp(−𝛽𝑈)

Rare event: 𝑝target(𝑥) ∝ 𝟏𝐵(𝑥)𝑝(𝑥)

Sampling – classical approach
Markov chain Monte Carlo (MCMC)

Sampling – classical approach
Markov chain Monte Carlo (MCMC)

For example, unadjusted Langevin dynamics:

d𝑋𝑡 = ∇log ෤𝑝 𝑋𝑡 d𝑡 + 2d𝑊𝑡

Sampling – classical approach
Markov chain Monte Carlo (MCMC)

For example, unadjusted Langevin dynamics:

d𝑋𝑡 = ∇log ෤𝑝 𝑋𝑡 d𝑡 + 2d𝑊𝑡

dependent samples; auto-correlation reduces efficiency sample size

Sampling – classical approach
Markov chain Monte Carlo (MCMC)

For example, unadjusted Langevin dynamics:

d𝑋𝑡 = ∇log ෤𝑝 𝑋𝑡 d𝑡 + 2d𝑊𝑡

dependent samples; auto-correlation reduces efficiency sample size
ergodicity; only guarantee convergence with infinite steps

Neural samplers
Train a neural network to amortize the sampling process

Neural samplers
Train a neural network to amortize the sampling process

independent samples!
can mix in finite time

Neural samplers
Train a neural network to amortize the sampling process

independent samples!
can mix in finite time

Neural samplers are in fact generative models:

𝑝prior 𝑝target

generative model
NF, Diffusion, etc.

Diffusion Neural samplers
Train a diffusion (like) model

d𝑋𝑡 = 𝑓𝜃 𝑋𝑡 , 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 ,

Diffusion Neural samplers
Train a diffusion (like) model

d𝑋𝑡 = 𝑓𝜃 𝑋𝑡 , 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 ,

transporting samples from 𝑝prior to 𝑝target:

𝑋0 ∼ 𝑝prior , and want 𝑋𝑇 ∼ 𝑝target

Diffusion Neural samplers
1. Time-reversal sampler

Diffusion Neural samplers

d𝑋𝑡 = 𝑓𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑋0 ∼ 𝑝prior ,

Want: 𝑋𝑇 ∼ 𝑝target

1. Time-reversal sampler

Diffusion Neural samplers

d𝑋𝑡 = 𝑓𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑋0 ∼ 𝑝prior ,

Want: 𝑋𝑇 ∼ 𝑝target

Set a target process: d𝑌𝑡 = 𝑔 𝑌𝑡 , 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑌0 ∼ 𝑝target,

1. Time-reversal sampler

Diffusion Neural samplers

d𝑋𝑡 = 𝑓𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑋0 ∼ 𝑝prior ,

Want: 𝑋𝑇 ∼ 𝑝target

Set a target process: d𝑌𝑡 = 𝑔 𝑌𝑡 , 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑌0 ∼ 𝑝target,

1. Time-reversal sampler

a simple function, e.g., 0

Diffusion Neural samplers

d𝑋𝑡 = 𝑓𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑋0 ∼ 𝑝prior ,

Want: 𝑋𝑇 ∼ 𝑝target

Set a target process: d𝑌𝑡 = 𝑔 𝑌𝑡 , 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑌0 ∼ 𝑝target,

1. Time-reversal sampler

a simple function, e.g., 0

align

Diffusion Neural samplers

d𝑋𝑡 = 𝑓𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑋0 ∼ 𝑝prior ,

Want: 𝑋𝑇 ∼ 𝑝target

Set a target process: d𝑌𝑡 = 𝑔 𝑌𝑡 , 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑌0 ∼ 𝑝target,

1. Time-reversal sampler

a simple function, e.g., 0

align
𝑋𝑡 ∼ 𝑌𝑇−𝑡

Diffusion Neural samplers

d𝑋𝑡 = 𝑓𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑋0 ∼ 𝑝prior ,

Want: 𝑋𝑇 ∼ 𝑝target

Set a target process: d𝑌𝑡 = 𝑔 𝑌𝑡 , 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑌0 ∼ 𝑝target,

1. Time-reversal sampler

a simple function, e.g., 0

align
𝑋𝑡 ∼ 𝑌𝑇−𝑡

𝑋𝑇 ∼ 𝑝target

Diffusion Neural samplers

d𝑋𝑡 = 𝑓𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑋0 ∼ 𝑝prior ,

Want: 𝑋𝑇 ∼ 𝑝target

Set a target process: d𝑌𝑡 = 𝑔 𝑌𝑡 , 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑌𝑡 ∼ 𝑝target,

1. Time-reversal sampler

a simple function, e.g., 0

align
𝑋𝑡 ∼ 𝑌𝑇−𝑡

𝑋𝑇 ∼ 𝑝target

Want a sample process (prior to target),

Diffusion Neural samplers

d𝑋𝑡 = 𝑓𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑋0 ∼ 𝑝prior ,

Want: 𝑋𝑇 ∼ 𝑝target

Set a target process: d𝑌𝑡 = 𝑔 𝑌𝑡 , 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑌𝑡 ∼ 𝑝target,

1. Time-reversal sampler

a simple function, e.g., 0

align
𝑋𝑡 ∼ 𝑌𝑇−𝑡

𝑋𝑇 ∼ 𝑝target

Want a sample process (prior to target),

 To be the time-reversal,

Diffusion Neural samplers

d𝑋𝑡 = 𝑓𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑋0 ∼ 𝑝prior ,

Want: 𝑋𝑇 ∼ 𝑝target

Set a target process: d𝑌𝑡 = 𝑔 𝑌𝑡 , 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑌𝑡 ∼ 𝑝target,

1. Time-reversal sampler

a simple function, e.g., 0

align
𝑋𝑡 ∼ 𝑌𝑇−𝑡

𝑋𝑇 ∼ 𝑝target

Want a sample process (prior to target),

 To be the time-reversal,

 of a simple process (target to prior)

Diffusion Neural samplers
1. Time-reversal sampler

This includes
(1) DDS (denoising diffusion sampler)
(2) PIS (path integral sampler)
(3) DIS (diffusion time-reversal sampler)
(4) GFlowNet (generative flow network)
(5) iDEM (iterated denoising energy matching)
(6) RDMC (reversal diffusion monte carlo)
(7) PINN (physics-informed neural networks) sampler

…

Diffusion Neural samplers

 Any other ways?

Diffusion Neural samplers
2. Escorted transport sampler

Diffusion Neural samplers
2. Escorted transport sampler

d𝑋𝑡 = 𝑓𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑋0 ∼ 𝑝prior ,

Want: 𝑋𝑇 ∼ 𝑝target

Diffusion Neural samplers
2. Escorted transport sampler

d𝑋𝑡 = 𝑓𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑋0 ∼ 𝑝prior ,

define a sequence of interpolants 𝜋𝑡: 𝜋0 = 𝑝prior, 𝜋𝑇 = 𝑝target

Diffusion Neural samplers
2. Escorted transport sampler

d𝑋𝑡 = 𝑓𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑋0 ∼ 𝑝prior ,

define a sequence of interpolants 𝜋𝑡: 𝜋0 = 𝑝prior, 𝜋𝑇 = 𝑝target

If marginal of 𝑋𝑡 ∼ 𝜋𝑡 𝑋𝑇 ∼ 𝑝target

Diffusion Neural samplers
2. Escorted transport sampler

d𝑋𝑡 = 𝑓𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑋0 ∼ 𝑝prior ,

define a sequence of interpolants 𝜋𝑡: 𝜋0 = 𝑝prior, 𝜋𝑇 = 𝑝target

If marginal of 𝑋𝑡 ∼ 𝜋𝑡 𝑋𝑇 ∼ 𝑝target

Want a sample process (prior to target),

Diffusion Neural samplers
2. Escorted transport sampler

d𝑋𝑡 = 𝑓𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑋0 ∼ 𝑝prior ,

define a sequence of interpolants 𝜋𝑡: 𝜋0 = 𝑝prior, 𝜋𝑇 = 𝑝target

If marginal of 𝑋𝑡 ∼ 𝜋𝑡 𝑋𝑇 ∼ 𝑝target

Want a sample process (prior to target),

 whose marginal densities aligns with

Diffusion Neural samplers
2. Escorted transport sampler

d𝑋𝑡 = 𝑓𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑋0 ∼ 𝑝prior ,

define a sequence of interpolants 𝜋𝑡: 𝜋0 = 𝑝prior, 𝜋𝑇 = 𝑝target

If marginal of 𝑋𝑡 ∼ 𝜋𝑡 𝑋𝑇 ∼ 𝑝target

Want a sample process (prior to target),

 whose marginal densities aligns with

 pre-defined interpolants between prior and target

This includes
(1) CMCD (Controlled Monte Carlo Diffusions)
(2) NETS (non-equilibrium transport sampler)
(3) PINN (physics-informed neural networks) sampler
(4) LFIS (Liouville Flow Importance Sampler)

…

Diffusion Neural samplers
2. Escorted transport sampler

Diffusion Neural samplers

 Any other ways?

Diffusion Neural samplers
3. Annealed variance reduction sampler

Diffusion Neural samplers
3. Annealed variance reduction sampler

d𝑋𝑡 = 𝑓𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑋0 ∼ 𝑝prior ,

Want: 𝑋𝑇 ∼ 𝑝target

Diffusion Neural samplers
3. Annealed variance reduction sampler

d𝑋𝑡 = 𝑓𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑋0 ∼ 𝑝prior ,

Want: 𝑋𝑇 ∼ 𝑝target

What if we do not train it?

Diffusion Neural samplers
3. Annealed variance reduction sampler

d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑋0 ∼ 𝑝prior ,

Want: 𝑋𝑇 ∼ 𝑝target

What if we do not train it?

Diffusion Neural samplers
3. Annealed variance reduction sampler

d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑋0 ∼ 𝑝prior ,

d𝑋𝑡 = 𝑔 𝑋𝑡, 𝑡 d𝑡 + 𝜎 2d𝑊𝑡
𝑡 , 𝑋𝑇 ∼ 𝑝target,

Diffusion Neural samplers
3. Annealed variance reduction sampler

d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑋0 ∼ 𝑝prior ,

d𝑋𝑡 = 𝑔 𝑋𝑡, 𝑡 d𝑡 + 𝜎 2d𝑊𝑡
𝑡 , 𝑋𝑇 ∼ 𝑝target,

𝐐 𝑋

𝐏 𝑋

Diffusion Neural samplers
3. Annealed variance reduction sampler

d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑋0 ∼ 𝑝prior ,

d𝑋𝑡 = 𝑔 𝑋𝑡, 𝑡 d𝑡 + 𝜎 2d𝑊𝑡
𝑡 , 𝑋𝑇 ∼ 𝑝target,

Importance weight:

d𝐐 𝑋

d𝐏 𝑋

𝐐 𝑋

𝐏 𝑋

Diffusion Neural samplers
3. Annealed variance reduction sampler

d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑋0 ∼ 𝑝prior ,

d𝑋𝑡 = 𝑔𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎 2d𝑊𝑡
𝑡 , 𝑋𝑇 ∼ 𝑝target,

Importance weight:

d𝐐 𝑋

d𝐏𝜃 𝑋

𝐐 𝑋

𝐏𝜃 𝑋

Diffusion Neural samplers
3. Annealed variance reduction sampler

d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑋0 ∼ 𝑝prior ,

d𝑋𝑡 = 𝑔𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎 2d𝑊𝑡
𝑡 , 𝑋𝑇 ∼ 𝑝target,

Importance weight:

d𝐐 𝑋

d𝐏𝜃 𝑋

𝐐 𝑋

𝐏𝜃 𝑋

Align

Diffusion Neural samplers
3. Annealed variance reduction sampler

d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑋0 ∼ 𝑝prior ,

d𝑋𝑡 = 𝑔𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎 2d𝑊𝑡
𝑡 , 𝑋𝑇 ∼ 𝑝target,

Importance weight:

d𝐐 𝑋

d𝐏𝜃 𝑋

𝐐 𝑋

𝐏𝜃 𝑋

Align

Small variance

Diffusion Neural samplers
3. Annealed variance reduction sampler

d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑋0 ∼ 𝑝prior ,

d𝑋𝑡 = 𝑔𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎 2d𝑊𝑡
𝑡 , 𝑋𝑇 ∼ 𝑝target,

Importance weight:

d𝐐 𝑋

d𝐏𝜃 𝑋

𝐐 𝑋

𝐏𝜃 𝑋

Align

Small variance

Predefine a sample process (prior to target),

Diffusion Neural samplers
3. Annealed variance reduction sampler

d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑋0 ∼ 𝑝prior ,

d𝑋𝑡 = 𝑔𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎 2d𝑊𝑡
𝑡 , 𝑋𝑇 ∼ 𝑝target,

Importance weight:

d𝐐 𝑋

d𝐏𝜃 𝑋

𝐐 𝑋

𝐏𝜃 𝑋

Align

Small variance

Predefine a sample process (prior to target),

 define or train a backward process (target to prior),

Diffusion Neural samplers
3. Annealed variance reduction sampler

d𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 d𝑡 + 𝜎 2d𝑊𝑡 , 𝑋0 ∼ 𝑝prior ,

d𝑋𝑡 = 𝑔𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎 2d𝑊𝑡
𝑡 , 𝑋𝑇 ∼ 𝑝target,

Importance weight:

d𝐐 𝑋

d𝐏𝜃 𝑋

𝐐 𝑋

𝐏𝜃 𝑋

Align

Small variance

Predefine a sample process (prior to target),

 define or train a backward process (target to prior),

 perform importance sampling

This includes
(1) AIS (Annealed Importance Sampling)
(2) MCD (Monte Carlo Diffusion)
(3) LDVI (Langevin Diffusion Variational Inference)

…

Diffusion Neural samplers
3. Annealed variance reduction sampler

Diffusion Neural samplers

1. Time-reversal sampler

2. Escorted transport sampler

3. Annealed variance reduction sampler

Diffusion Neural samplers

1. Time-reversal sampler

2. Escorted transport sampler

3. Annealed variance reduction sampler

These are design choices for the sampling processes

Diffusion Neural samplers

1. Time-reversal sampler

2. Escorted transport sampler

3. Annealed variance reduction sampler

These are design choices for the sampling processes
But how to train them?

Diffusion Neural samplers

1. Time-reversal sampler

2. Escorted transport sampler

3. Annealed variance reduction sampler

These are design choices for the sampling processes
But how to train them?

Diffusion Neural samplers
a. path-measure alignment

Diffusion Neural samplers
a. path-measure alignment

For any desired process 𝐐 𝑋 or 𝐐𝜽 𝑋

we can write down its desired time-reversal 𝐏 𝑋 or 𝐏𝜽 𝑋 ,

Diffusion Neural samplers
a. path-measure alignment

For any desired process 𝐐 𝑋 or 𝐐𝜽 𝑋

we can write down its desired time-reversal 𝐏 𝑋 or 𝐏𝜽 𝑋 ,

Diffusion Neural samplers
a. path-measure alignment

For any desired process 𝐐 𝑋 or 𝐐𝜽 𝑋

we can write down its desired time-reversal 𝐏 𝑋 or 𝐏𝜽 𝑋 ,

align

Diffusion Neural samplers
a. path-measure alignment

𝐷KL[𝐐| 𝐏 = E𝐐 log
d𝐐 𝑋

d𝐏 𝑋

𝐷LV[𝐐| 𝐏 = Var𝝅 log
d𝐐 𝑋

d𝐏 𝑋

𝐷TB[𝐐| 𝐏 = E𝝅 log
d𝐐 𝑋

d𝐏 𝑋
− 𝑘

2

Other choices exist, including sub-TB, DB, etc…

Diffusion Neural samplers
b. marginal alignment

Diffusion Neural samplers
b. marginal alignment

For any desired process 𝐐 𝑋 or 𝐐𝜽 𝑋

we can write down its desired marginal 𝑞𝑡(𝑋𝑡),

Diffusion Neural samplers
b. marginal alignment

For any desired process 𝐐 𝑋 or 𝐐𝜽 𝑋

we can write down its desired marginal 𝑞𝑡(𝑋𝑡),

Diffusion Neural samplers
b. marginal alignment

For any desired process 𝐐 𝑋 or 𝐐𝜽 𝑋

we can write down its desired marginal 𝑞𝑡(𝑋𝑡),

align

Diffusion Neural samplers
b. marginal alignment

Score matching with Score estimator

PINN

Action matching

…

Diffusion Neural samplers

Time-reversal
sampler

Escorted transport
sampler

Annealed Variance
Reduction Sampler

Path measure
alignment

DDS, DIS, PIS, GFN CMCD, SLCD MCD

Marginal alignment iDEM, RDMC, PINN-
sampler

NETS, PINN-
sampler, LFIS

Diffusion Neural samplers - Desiderata
Let’s look at the loss again, for example:

𝐷KL[𝐐| 𝐏 = E𝐐 log
d𝐐 𝑋

d𝐏 𝑋

𝐷LV[𝐐| 𝐏 = Var𝝅 log
d𝐐 𝑋

d𝐏 𝑋

𝐷TB[𝐐| 𝐏 = E𝝅 log
d𝐐 𝑋

d𝐏 𝑋
− 𝑘

2

Diffusion Neural samplers - Desiderata
Let’s look at the loss again, for example:

𝐷KL[𝐐| 𝐏 = E𝐐 log
d𝐐 𝑋

d𝐏 𝑋

𝐷LV[𝐐| 𝐏 = Var𝝅 log
d𝐐 𝑋

d𝐏 𝑋

𝐷TB[𝐐| 𝐏 = E𝝅 log
d𝐐 𝑋

d𝐏 𝑋
− 𝑘

2

Diffusion Neural samplers - Desiderata
Let’s look at the loss again, for example:

𝐷KL[𝐐| 𝐏 = E𝐐 log
d𝐐 𝑋

d𝐏 𝑋

𝐷LV[𝐐| 𝐏 = Var𝝅 log
d𝐐 𝑋

d𝐏 𝑋

𝐷TB[𝐐| 𝐏 = E𝝅 log
d𝐐 𝑋

d𝐏 𝑋
− 𝑘

2

Diffusion Neural samplers - Desiderata
Let’s look at the loss again, for example:

need to simulate the trajectory – expensive!

𝐷KL[𝐐| 𝐏 = E𝐐 log
d𝐐 𝑋

d𝐏 𝑋

𝐷LV[𝐐| 𝐏 = Var𝝅 log
d𝐐 𝑋

d𝐏 𝑋

𝐷TB[𝐐| 𝐏 = E𝝅 log
d𝐐 𝑋

d𝐏 𝑋
− 𝑘

2

Diffusion Neural samplers - Desiderata
Let’s look at the loss again, for example:

need to simulate the trajectory – expensive!
Any ways for “simulation-free” training?

Simulation-free training of Diffusion Neural samplers

Simulation-free training of Diffusion Neural samplers

avoid simulating the trajectory (entirely) during training.

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Simulation-free training of Diffusion Neural samplers

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define 𝐹𝜃 ⋅, 𝑡 as an invertible function

Simulation-free training of Diffusion Neural samplers

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define 𝐹𝜃 ⋅, 𝑡 as an invertible function

Simulation-free training of Diffusion Neural samplers

The first way of sampling

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define 𝐹𝜃 ⋅, 𝑡 as an invertible function

𝑋𝑡 = 𝐹𝜃 𝑍, 𝑡 , 𝑍 ∼ 𝑝base

Simulation-free training of Diffusion Neural samplers

The first way of sampling

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define 𝐹𝜃 ⋅, 𝑡 as an invertible function

𝑋𝑡 = 𝐹𝜃 𝑍, 𝑡 , 𝑍 ∼ 𝑝base

Simulation-free training of Diffusion Neural samplers

The first way of sampling

The second way of sampling

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define 𝐹𝜃 ⋅, 𝑡 as an invertible function

𝑋𝑡 = 𝐹𝜃 𝑍, 𝑡 , 𝑍 ∼ 𝑝base

𝑋0 = 𝐹𝜃 𝑍, 0 , 𝑍 ∼ 𝑝base

Simulation-free training of Diffusion Neural samplers

The first way of sampling

The second way of sampling

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define 𝐹𝜃 ⋅, 𝑡 as an invertible function

𝑋𝑡 = 𝐹𝜃 𝑍, 𝑡 , 𝑍 ∼ 𝑝base

𝑋0 = 𝐹𝜃 𝑍, 0 , 𝑍 ∼ 𝑝base
d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝑍, 𝑡 d𝑡

Simulation-free training of Diffusion Neural samplers

The first way of sampling

The second way of sampling

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define 𝐹𝜃 ⋅, 𝑡 as an invertible function

𝑋𝑡 = 𝐹𝜃 𝑍, 𝑡 , 𝑍 ∼ 𝑝base

𝑋0 = 𝐹𝜃 𝑍, 0 , 𝑍 ∼ 𝑝base
d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝑍, 𝑡 d𝑡

Simulation-free training of Diffusion Neural samplers

The first way of sampling

The second way of sampling

𝑍 = 𝐹𝜃
−1(𝑋𝑡, 𝑡)

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define 𝐹𝜃 ⋅, 𝑡 as an invertible function

𝑋𝑡 = 𝐹𝜃 𝑍, 𝑡 , 𝑍 ∼ 𝑝base

𝑋0 = 𝐹𝜃 𝑍, 0 , 𝑍 ∼ 𝑝base

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡

Simulation-free training of Diffusion Neural samplers

The first way of sampling

The second way of sampling

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define 𝐹𝜃 ⋅, 𝑡 as an invertible function

𝑋𝑡 = 𝐹𝜃 𝑍, 𝑡 , 𝑍 ∼ 𝑝base

𝑋0 = 𝐹𝜃 𝑍, 0 , 𝑍 ∼ 𝑝base

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡

Simulation-free training of Diffusion Neural samplers

The first way of sampling

The second way of sampling

Standard form of ODE

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define 𝐹𝜃 ⋅, 𝑡 as an invertible function

𝑋𝑡 = 𝐹𝜃 𝑍, 𝑡 , 𝑍 ∼ 𝑝base

𝑋0 = 𝐹𝜃 𝑍, 0 , 𝑍 ∼ 𝑝base

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡 , 𝑡), 𝑡 d𝑡 + 𝜎𝑡

2∇log𝑞𝜃 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡

Simulation-free training of Diffusion Neural samplers

The first way of sampling

The second way of sampling

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define 𝐹𝜃 ⋅, 𝑡 as an invertible function

𝑋𝑡 = 𝐹𝜃 𝑍, 𝑡 , 𝑍 ∼ 𝑝base

𝑋0 = 𝐹𝜃 𝑍, 0 , 𝑍 ∼ 𝑝base

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡 , 𝑡), 𝑡 d𝑡 + 𝜎𝑡

2∇log𝑞𝜃 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡

Simulation-free training of Diffusion Neural samplers

The first way of sampling

The second way of sampling

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define 𝐹𝜃 ⋅, 𝑡 as an invertible function

𝑋𝑡 = 𝐹𝜃 𝑍, 𝑡 , 𝑍 ∼ 𝑝base

𝑋0 = 𝐹𝜃 𝑍, 0 , 𝑍 ∼ 𝑝base

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡 , 𝑡), 𝑡 d𝑡 + 𝜎𝑡

2∇log𝑞𝜃 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡

Simulation-free training of Diffusion Neural samplers

The first way of sampling

The second way of sampling
Easily obtained by NF

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define 𝐹𝜃 ⋅, 𝑡 as an invertible function

𝑋𝑡 = 𝐹𝜃 𝑍, 𝑡 , 𝑍 ∼ 𝑝base

𝑋0 = 𝐹𝜃 𝑍, 0 , 𝑍 ∼ 𝑝base

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡 , 𝑡), 𝑡 d𝑡 + 𝜎𝑡

2∇log𝑞𝜃 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡

Simulation-free training of Diffusion Neural samplers

The first way of sampling

The second way of sampling

directly sample from time 𝑡

avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define 𝐹𝜃 ⋅, 𝑡 as an invertible function

𝑋𝑡 = 𝐹𝜃 𝑍, 𝑡 , 𝑍 ∼ 𝑝base

𝑋0 = 𝐹𝜃 𝑍, 0 , 𝑍 ∼ 𝑝base

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡 , 𝑡), 𝑡 d𝑡 + 𝜎𝑡

2∇log𝑞𝜃 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡

Simulation-free training of Diffusion Neural samplers

The first way of sampling

The second way of sampling

directly sample from time 𝑡

Calculate the same loss
as other diffusion samplers

Simulation-free training of Diffusion Neural samplers

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡 + 𝜎𝑡

2∇log𝑞𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡, 𝑋0 ∼ 𝑝prior

Simulation-free training of Diffusion Neural samplers

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡 + 𝜎𝑡

2∇log𝑞𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡, 𝑋0 ∼ 𝑝prior

d𝑋𝑡 = 𝑔 𝑋𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡
−, 𝑋𝑇 ∼ 𝑝target

Align

a simple function, e.g., 0

Simulation-free training of Diffusion Neural samplers

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡 + 𝜎𝑡

2∇log𝑞𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡, 𝑋0 ∼ 𝑝prior

d𝑋𝑡 = 𝑔 𝑋𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡
−, 𝑋𝑇 ∼ 𝑝target

Align

a simple function, e.g., 0

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡 − 𝜎𝑡

2∇log𝑞𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡
−, 𝑋𝑇 ∼ 𝑞𝜃(⋅, 𝑇)

time-reversal

Simulation-free training of Diffusion Neural samplers

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡 + 𝜎𝑡

2∇log𝑞𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡, 𝑋0 ∼ 𝑝prior

d𝑋𝑡 = 𝑔 𝑋𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡
−, 𝑋𝑇 ∼ 𝑝target

Align

a simple function, e.g., 0

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡 − 𝜎𝑡

2∇log𝑞𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡
−, 𝑋𝑇 ∼ 𝑞𝜃(⋅, 𝑇)

time-reversal

Simulation-free training of Diffusion Neural samplers

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡 + 𝜎𝑡

2∇log𝑞𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡, 𝑋0 ∼ 𝑝prior

d𝑋𝑡 = 𝑔 𝑋𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡
−, 𝑋𝑇 ∼ 𝑝target

Align

a simple function, e.g., 0

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡 − 𝜎𝑡

2∇log𝑞𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡
−, 𝑋𝑇 ∼ 𝑞𝜃(⋅, 𝑇)

time-reversal

same direction – Girsanov Theorem applicable

Simulation-free training of Diffusion Neural samplers

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡 + 𝜎𝑡

2∇log𝑞𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡, 𝑋0 ∼ 𝑝prior

d𝑋𝑡 = 𝑔 𝑋𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡
−, 𝑋𝑇 ∼ 𝑝target

Align

a simple function, e.g., 0

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡 − 𝜎𝑡

2∇log𝑞𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡
−, 𝑋𝑇 ∼ 𝑞𝜃(⋅, 𝑇)

time-reversal

same direction – Girsanov Theorem applicable

simulation-free evaluation – can always obtain sample by 1-step 𝑋𝑡 = 𝐹𝜃 𝑍, 𝑡 , 𝑍 ∼ 𝑝base

Simulation-free training of Diffusion Neural samplers

Great! How does it perform?

Simulation-free training of Diffusion Neural samplers

Great! How does it perform?

unfortunately…

Simulation-free training of Diffusion Neural samplers

Great! How does it perform?

unfortunately…

initialization after training

Simulation-free training of Diffusion Neural samplers

Great! How does it perform?

unfortunately…

initialization after training

Simulation-free training of Diffusion Neural samplers

initialization after training

Why?

Simulation-free training of Diffusion Neural samplers

initialization after training

Why?

Objective? same as DDS

Simulation-free training of Diffusion Neural samplers

initialization after training

Why?

Objective? same as DDS

Capacity? target is so simple

Simulation-free training of Diffusion Neural samplers

initialization after training

Why?

Objective? same as DDS

Capacity? target is so simple

Network parameterization? might be the reason

Langevin Preconditioning

Langevin Preconditioning
a. DDS/PIS

𝑓𝜃 ⋅, 𝑡 = NN1,𝜃 ⋅, 𝑡 + NN2,𝜃 𝑡 ∘ ∇ log 𝑝target(⋅)

≈ 0

warm-up initialization

Langevin Preconditioning

b. CMCD/NETS

𝑓𝜃 ⋅, 𝑡 = NN1,𝜃 ⋅, 𝑡 + NN2,𝜃 𝑡 ∘ ∇ log 𝑝target(⋅)

≈ 0

warm-up initialization
a. DDS/PIS

Langevin gradient

𝑑𝑋𝑡 = (𝑓𝜃 𝑋𝑡 , 𝑡 + 𝜎𝑡
2∇ log 𝜋𝑡 𝑋𝑡)𝑑𝑡 + 2 𝜎𝑡𝑑𝑊𝑡

𝑑𝑋𝑡 = (𝑓𝜃 𝑋𝑡 , 𝑡 − 𝜎𝑡
2∇ log 𝜋𝑡 𝑋𝑡)𝑑𝑡 + 2 𝜎𝑡𝑑𝑊𝑡

−

𝜋𝑡 ⋅ = 𝑝prior
1−𝛽

⋅ 𝑝target
𝛽

(⋅) Langevin gradient

𝐐𝜽 𝑋

𝐏𝜃 𝑋

Langevin Preconditioning

b. CMCD/NETS

𝑓𝜃 ⋅, 𝑡 = NN1,𝜃 ⋅, 𝑡 + NN2,𝜃 𝑡 ∘ ∇ log 𝑝target(⋅)

≈ 0

warm-up initialization
a. DDS/PIS

Langevin gradient

𝑑𝑋𝑡 = (𝑓𝜃 𝑋𝑡 , 𝑡 + 𝜎𝑡
2∇ log 𝜋𝑡 𝑋𝑡)𝑑𝑡 + 2 𝜎𝑡𝑑𝑊𝑡

𝑑𝑋𝑡 = (𝑓𝜃 𝑋𝑡 , 𝑡 − 𝜎𝑡
2∇ log 𝜋𝑡 𝑋𝑡)𝑑𝑡 + 2 𝜎𝑡𝑑𝑊𝑡

−

𝜋𝑡 ⋅ = 𝑝prior
1−𝛽

⋅ 𝑝target
𝛽

(⋅) Langevin gradient

𝐐𝜽 𝑋

𝐏𝜃 𝑋

What if we remove this Langevin?

How to remove Langevin?

b. CMCD’s Optimality condition (Nelson’s relation)

𝑫(𝐐
𝜽

𝒑
𝐩𝐫𝐢𝐨𝐫, 𝑓𝜃+𝜎𝑡

2∇ log 𝜋𝑡 , 𝐏
𝜃

𝒑
𝐭𝐚𝐫𝐠𝐞𝐭, 𝑓𝜃−𝜎𝑡

2∇ log 𝜋𝑡)

𝑫(𝐐
𝜽

𝒑𝐩𝐫𝐢𝐨𝐫, 𝑓𝜃 , 𝐏
𝜃

𝒑
𝐭𝐚𝐫𝐠𝐞𝐭, 𝑓𝜃−2𝜎𝑡

2∇ log 𝜋𝑡)

But it is not necessary!

a. DDS

𝑓𝜃 ⋅, 𝑡 = NN1,𝜃 ⋅, 𝑡 + NN2,𝜃 𝑡 ∘ ∇ log 𝑝target(⋅)

Empirical Results
a. Langevin precondition is necessary to prevent mode collapse

Empirical Results
a. Langevin precondition is necessary to prevent mode collapse

Empirical Results
b. Does other ways of incorporating the target information help?

Init.

KL

LV

TB

Empirical Results
b. Do other ways of incorporating the target information help?

Init.

KL

LV

TB

Empirical Results

DDS w/o Langevin for GMM-3:

KL LV TB

Empirical Results
c. How about sample efficiency?

Empirical Results
d. PINN objective is different

1. different interpolant
2. different prior size
3. “consistent” behavior

Parallel Tempering/Replica Exchange

SOTA MCMC in MD simulation

 Highly parallel

high temperature
𝑝target

1/temp

low temperature
𝑝target

Parallel Tempering/Replica Exchange

Correlated samples

Need more simulation for new samples

Different use from neural samplers…
high temperature
𝑝target

1/temp

low temperature
𝑝target

Parallel Tempering/Replica Exchange

Correlated samples

Need more simulation for new samples

Generative models can easily address them!
But is it worth it?

Different use from neural samplers…
high temperature
𝑝target

1/temp

low temperature
𝑝target

Parallel Tempering/Replica Exchange

high temperature
𝑝target

1/temp

low temperature
𝑝target

Discussion & Takeaway

1. We should not hide Langevin gradient used

2. If we need Langevin gradient anyway, we need to talk about sample
efficiency (we should also be open to initialize using data)

3. Improving PT is a promising direction (solve challenges with neural
network ansatz)

4. Better prior, interpolant, explorative objectives still needed

Discussion & Takeaway

1. We should not hide Langevin gradient used

2. If we need Langevin gradient anyway, we need to talk about sample
efficiency (we should also be open to initialize using data)

3. Improving PT is a promising direction (solve challenges with neural
network ansatz)

4. Better prior, interpolant, explorative objectives still needed

Discussion & Takeaway

1. We should not hide Langevin gradient used

2. If we need Langevin gradient anyway, we need to talk about sample
efficiency (we should also be open to initialize using data)

3. Improving PT is a promising direction (solve challenges with neural
network ansatz)

4. Better prior, interpolant, explorative objectives still needed

Discussion & Takeaway

1. We should not hide Langevin gradient used

2. If we need Langevin gradient anyway, we need to talk about sample
efficiency (we should also be open to initialize using data)

3. Improving PT is a promising direction (solve challenges with neural
network ansatz)

4. Better prior, interpolant, explorative objectives still needed

	Slide 1: Pursuits and Challenges Towards Simulation-free Training of Neural Sampler
	Slide 2: Sampling
	Slide 3: Sampling
	Slide 4: Sampling
	Slide 5: Sampling
	Slide 6: Sampling – classical approach
	Slide 7: Sampling – classical approach
	Slide 8: Sampling – classical approach
	Slide 9: Sampling – classical approach
	Slide 10: Neural samplers
	Slide 11: Neural samplers
	Slide 12: Neural samplers
	Slide 13: Diffusion Neural samplers
	Slide 14: Diffusion Neural samplers
	Slide 15: Diffusion Neural samplers
	Slide 16: Diffusion Neural samplers
	Slide 17: Diffusion Neural samplers
	Slide 18: Diffusion Neural samplers
	Slide 19: Diffusion Neural samplers
	Slide 20: Diffusion Neural samplers
	Slide 21: Diffusion Neural samplers
	Slide 22: Diffusion Neural samplers
	Slide 23: Diffusion Neural samplers
	Slide 24: Diffusion Neural samplers
	Slide 25: Diffusion Neural samplers
	Slide 26: Diffusion Neural samplers
	Slide 27: Diffusion Neural samplers
	Slide 28: Diffusion Neural samplers
	Slide 29: Diffusion Neural samplers
	Slide 30: Diffusion Neural samplers
	Slide 31: Diffusion Neural samplers
	Slide 32: Diffusion Neural samplers
	Slide 33: Diffusion Neural samplers
	Slide 34: Diffusion Neural samplers
	Slide 35: Diffusion Neural samplers
	Slide 36: Diffusion Neural samplers
	Slide 37: Diffusion Neural samplers
	Slide 38: Diffusion Neural samplers
	Slide 39: Diffusion Neural samplers
	Slide 40: Diffusion Neural samplers
	Slide 41: Diffusion Neural samplers
	Slide 42: Diffusion Neural samplers
	Slide 43: Diffusion Neural samplers
	Slide 44: Diffusion Neural samplers
	Slide 45: Diffusion Neural samplers
	Slide 46: Diffusion Neural samplers
	Slide 47: Diffusion Neural samplers
	Slide 48: Diffusion Neural samplers
	Slide 49: Diffusion Neural samplers
	Slide 50: Diffusion Neural samplers
	Slide 51: Diffusion Neural samplers
	Slide 52: Diffusion Neural samplers
	Slide 53: Diffusion Neural samplers
	Slide 54: Diffusion Neural samplers
	Slide 55: Diffusion Neural samplers
	Slide 56: Diffusion Neural samplers
	Slide 57: Diffusion Neural samplers
	Slide 58: Diffusion Neural samplers
	Slide 59: Diffusion Neural samplers
	Slide 60: Diffusion Neural samplers
	Slide 61: Diffusion Neural samplers
	Slide 62: Diffusion Neural samplers
	Slide 63: Diffusion Neural samplers
	Slide 64: Diffusion Neural samplers
	Slide 65: Diffusion Neural samplers - Desiderata
	Slide 66: Diffusion Neural samplers - Desiderata
	Slide 67: Diffusion Neural samplers - Desiderata
	Slide 68: Diffusion Neural samplers - Desiderata
	Slide 69: Diffusion Neural samplers - Desiderata
	Slide 70: Simulation-free training of Diffusion Neural samplers
	Slide 71: Simulation-free training of Diffusion Neural samplers
	Slide 72: Simulation-free training of Diffusion Neural samplers
	Slide 73: Simulation-free training of Diffusion Neural samplers
	Slide 74: Simulation-free training of Diffusion Neural samplers
	Slide 75: Simulation-free training of Diffusion Neural samplers
	Slide 76: Simulation-free training of Diffusion Neural samplers
	Slide 77: Simulation-free training of Diffusion Neural samplers
	Slide 78: Simulation-free training of Diffusion Neural samplers
	Slide 79: Simulation-free training of Diffusion Neural samplers
	Slide 80: Simulation-free training of Diffusion Neural samplers
	Slide 81: Simulation-free training of Diffusion Neural samplers
	Slide 82: Simulation-free training of Diffusion Neural samplers
	Slide 83: Simulation-free training of Diffusion Neural samplers
	Slide 84: Simulation-free training of Diffusion Neural samplers
	Slide 85: Simulation-free training of Diffusion Neural samplers
	Slide 86: Simulation-free training of Diffusion Neural samplers
	Slide 87: Simulation-free training of Diffusion Neural samplers
	Slide 88: Simulation-free training of Diffusion Neural samplers
	Slide 89: Simulation-free training of Diffusion Neural samplers
	Slide 90: Simulation-free training of Diffusion Neural samplers
	Slide 91: Simulation-free training of Diffusion Neural samplers
	Slide 92: Simulation-free training of Diffusion Neural samplers
	Slide 93: Simulation-free training of Diffusion Neural samplers
	Slide 94: Simulation-free training of Diffusion Neural samplers
	Slide 95: Simulation-free training of Diffusion Neural samplers
	Slide 96: Simulation-free training of Diffusion Neural samplers
	Slide 97: Simulation-free training of Diffusion Neural samplers
	Slide 98: Simulation-free training of Diffusion Neural samplers
	Slide 99: Simulation-free training of Diffusion Neural samplers
	Slide 100: Simulation-free training of Diffusion Neural samplers
	Slide 101: Langevin Preconditioning
	Slide 102: Langevin Preconditioning
	Slide 103: Langevin Preconditioning
	Slide 104: Langevin Preconditioning
	Slide 105: How to remove Langevin?
	Slide 106: Empirical Results
	Slide 107: Empirical Results
	Slide 108: Empirical Results
	Slide 109: Empirical Results
	Slide 110: Empirical Results
	Slide 111: Empirical Results
	Slide 112: Empirical Results
	Slide 113: Parallel Tempering/Replica Exchange
	Slide 114: Parallel Tempering/Replica Exchange
	Slide 115: Parallel Tempering/Replica Exchange
	Slide 116: Parallel Tempering/Replica Exchange
	Slide 117: Discussion & Takeaway
	Slide 118: Discussion & Takeaway
	Slide 119: Discussion & Takeaway
	Slide 120: Discussion & Takeaway

