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Unnormalized density function:

𝑝target 𝑥 =
෤𝑝 𝑥

𝑍
, 𝑍 = ∫ ෤𝑝 𝑥 d𝑥

Obtain sample 𝑥 ∼ 𝑝target.

Bayesian inference: 𝑝target ∝ likelihood × prior

Boltzmann distribution (molecules, etc): 𝑝target ∝ exp(−𝛽𝑈)

Rare event: 𝑝target(𝑥) ∝ 𝟏𝐵(𝑥)𝑝(𝑥)
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Sampling – classical approach
Markov chain Monte Carlo (MCMC)

For example, unadjusted Langevin dynamics:

d𝑋𝑡 = ∇log ෤𝑝 𝑋𝑡 d𝑡 + 2d𝑊𝑡

dependent samples; auto-correlation reduces efficiency sample size
ergodicity; only guarantee convergence with infinite steps
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Neural samplers
Train a neural network to amortize the sampling process

independent samples!
can mix in finite time

Neural samplers are in fact generative models:

𝑝prior 𝑝target

generative model
NF, Diffusion, etc. 
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1. Time-reversal sampler   

This includes
(1) DDS (denoising diffusion sampler)
(2) PIS (path integral sampler)
(3) DIS (diffusion time-reversal sampler)
(4) GFlowNet (generative flow network)
(5) iDEM (iterated denoising energy matching)
(6) RDMC (reversal diffusion monte carlo)
(7) PINN (physics-informed neural networks) sampler

…
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This includes
(1) CMCD (Controlled Monte Carlo Diffusions)
(2) NETS (non-equilibrium transport sampler)
(3) PINN (physics-informed neural networks) sampler
(4) LFIS (Liouville Flow Importance Sampler)

…
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Predefine a sample process (prior to target),

   define or train a backward process (target to prior),

                                                                                          perform importance sampling



This includes
(1) AIS (Annealed Importance Sampling)
(2) MCD (Monte Carlo Diffusion)
(3) LDVI (Langevin Diffusion Variational Inference)

…
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Other choices exist, including sub-TB, DB, etc…



Diffusion Neural samplers
b. marginal alignment



Diffusion Neural samplers
b. marginal alignment

For any desired process 𝐐 𝑋  or 𝐐𝜽 𝑋  

we can write down its desired marginal 𝑞𝑡(𝑋𝑡),



Diffusion Neural samplers
b. marginal alignment

For any desired process 𝐐 𝑋  or 𝐐𝜽 𝑋  

we can write down its desired marginal 𝑞𝑡(𝑋𝑡),



Diffusion Neural samplers
b. marginal alignment

For any desired process 𝐐 𝑋  or 𝐐𝜽 𝑋  

we can write down its desired marginal 𝑞𝑡(𝑋𝑡),

align 



Diffusion Neural samplers
b. marginal alignment

Score matching with Score estimator

PINN 

Action matching

…
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Time-reversal 
sampler

Escorted transport 
sampler

Annealed Variance 
Reduction Sampler

Path measure 
alignment

DDS, DIS, PIS, GFN CMCD, SLCD MCD

Marginal alignment iDEM, RDMC, PINN-
sampler

NETS, PINN-
sampler, LFIS
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Let’s look at the loss again, for example:
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Simulation-free training of Diffusion Neural samplers 



Simulation-free training of Diffusion Neural samplers 

avoid simulating the trajectory (entirely) during training.



avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Simulation-free training of Diffusion Neural samplers 



avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define 𝐹𝜃 ⋅, 𝑡  as an invertible function

Simulation-free training of Diffusion Neural samplers 



avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define 𝐹𝜃 ⋅, 𝑡  as an invertible function

Simulation-free training of Diffusion Neural samplers 

The first way of sampling



avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define 𝐹𝜃 ⋅, 𝑡  as an invertible function

𝑋𝑡 = 𝐹𝜃 𝑍, 𝑡 ,  𝑍 ∼ 𝑝base 

Simulation-free training of Diffusion Neural samplers 

The first way of sampling



avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define 𝐹𝜃 ⋅, 𝑡  as an invertible function

𝑋𝑡 = 𝐹𝜃 𝑍, 𝑡 ,  𝑍 ∼ 𝑝base 

Simulation-free training of Diffusion Neural samplers 

The first way of sampling

The second way of sampling



avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define 𝐹𝜃 ⋅, 𝑡  as an invertible function

𝑋𝑡 = 𝐹𝜃 𝑍, 𝑡 ,  𝑍 ∼ 𝑝base 

𝑋0 = 𝐹𝜃 𝑍, 0 , 𝑍 ∼ 𝑝base

Simulation-free training of Diffusion Neural samplers 

The first way of sampling

The second way of sampling



avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define 𝐹𝜃 ⋅, 𝑡  as an invertible function

𝑋𝑡 = 𝐹𝜃 𝑍, 𝑡 ,  𝑍 ∼ 𝑝base 

𝑋0 = 𝐹𝜃 𝑍, 0 , 𝑍 ∼ 𝑝base
d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝑍, 𝑡 d𝑡

Simulation-free training of Diffusion Neural samplers 

The first way of sampling

The second way of sampling



avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define 𝐹𝜃 ⋅, 𝑡  as an invertible function

𝑋𝑡 = 𝐹𝜃 𝑍, 𝑡 ,  𝑍 ∼ 𝑝base 

𝑋0 = 𝐹𝜃 𝑍, 0 , 𝑍 ∼ 𝑝base
d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝑍, 𝑡 d𝑡

Simulation-free training of Diffusion Neural samplers 

The first way of sampling

The second way of sampling

𝑍 = 𝐹𝜃
−1(𝑋𝑡, 𝑡)



avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define 𝐹𝜃 ⋅, 𝑡  as an invertible function

𝑋𝑡 = 𝐹𝜃 𝑍, 𝑡 ,  𝑍 ∼ 𝑝base 

𝑋0 = 𝐹𝜃 𝑍, 0 , 𝑍 ∼ 𝑝base

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡

Simulation-free training of Diffusion Neural samplers 

The first way of sampling

The second way of sampling



avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define 𝐹𝜃 ⋅, 𝑡  as an invertible function

𝑋𝑡 = 𝐹𝜃 𝑍, 𝑡 ,  𝑍 ∼ 𝑝base 

𝑋0 = 𝐹𝜃 𝑍, 0 , 𝑍 ∼ 𝑝base

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡

Simulation-free training of Diffusion Neural samplers 

The first way of sampling

The second way of sampling

Standard form of ODE



avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define 𝐹𝜃 ⋅, 𝑡  as an invertible function

𝑋𝑡 = 𝐹𝜃 𝑍, 𝑡 ,  𝑍 ∼ 𝑝base 

𝑋0 = 𝐹𝜃 𝑍, 0 , 𝑍 ∼ 𝑝base

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡 , 𝑡), 𝑡 d𝑡 + 𝜎𝑡

2∇log𝑞𝜃 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡

Simulation-free training of Diffusion Neural samplers 

The first way of sampling

The second way of sampling



avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define 𝐹𝜃 ⋅, 𝑡  as an invertible function

𝑋𝑡 = 𝐹𝜃 𝑍, 𝑡 ,  𝑍 ∼ 𝑝base 

𝑋0 = 𝐹𝜃 𝑍, 0 , 𝑍 ∼ 𝑝base

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡 , 𝑡), 𝑡 d𝑡 + 𝜎𝑡

2∇log𝑞𝜃 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡

Simulation-free training of Diffusion Neural samplers 

The first way of sampling

The second way of sampling



avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define 𝐹𝜃 ⋅, 𝑡  as an invertible function

𝑋𝑡 = 𝐹𝜃 𝑍, 𝑡 ,  𝑍 ∼ 𝑝base 

𝑋0 = 𝐹𝜃 𝑍, 0 , 𝑍 ∼ 𝑝base

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡 , 𝑡), 𝑡 d𝑡 + 𝜎𝑡

2∇log𝑞𝜃 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡

Simulation-free training of Diffusion Neural samplers 

The first way of sampling

The second way of sampling
Easily obtained by NF 



avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define 𝐹𝜃 ⋅, 𝑡  as an invertible function

𝑋𝑡 = 𝐹𝜃 𝑍, 𝑡 ,  𝑍 ∼ 𝑝base 

𝑋0 = 𝐹𝜃 𝑍, 0 , 𝑍 ∼ 𝑝base

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡 , 𝑡), 𝑡 d𝑡 + 𝜎𝑡

2∇log𝑞𝜃 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡

Simulation-free training of Diffusion Neural samplers 

The first way of sampling

The second way of sampling

directly sample from time 𝑡



avoid simulating the trajectory (entirely) during training.

using a time-dependent normalizing flow

Define 𝐹𝜃 ⋅, 𝑡  as an invertible function

𝑋𝑡 = 𝐹𝜃 𝑍, 𝑡 ,  𝑍 ∼ 𝑝base 

𝑋0 = 𝐹𝜃 𝑍, 0 , 𝑍 ∼ 𝑝base

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡 , 𝑡), 𝑡 d𝑡 + 𝜎𝑡

2∇log𝑞𝜃 𝑋𝑡 , 𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡

Simulation-free training of Diffusion Neural samplers 

The first way of sampling

The second way of sampling

directly sample from time 𝑡

Calculate the same loss 
as other diffusion samplers



Simulation-free training of Diffusion Neural samplers 

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡 + 𝜎𝑡

2∇log𝑞𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡, 𝑋0 ∼ 𝑝prior 



Simulation-free training of Diffusion Neural samplers 

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡 + 𝜎𝑡

2∇log𝑞𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡, 𝑋0 ∼ 𝑝prior 

d𝑋𝑡 = 𝑔 𝑋𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡
−, 𝑋𝑇 ∼ 𝑝target

Align

a simple function, e.g., 0



Simulation-free training of Diffusion Neural samplers 

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡 + 𝜎𝑡

2∇log𝑞𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡, 𝑋0 ∼ 𝑝prior 

d𝑋𝑡 = 𝑔 𝑋𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡
−, 𝑋𝑇 ∼ 𝑝target

Align

a simple function, e.g., 0

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡 − 𝜎𝑡

2∇log𝑞𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡
−, 𝑋𝑇 ∼ 𝑞𝜃(⋅, 𝑇) 

time-reversal



Simulation-free training of Diffusion Neural samplers 

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡 + 𝜎𝑡

2∇log𝑞𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡, 𝑋0 ∼ 𝑝prior 

d𝑋𝑡 = 𝑔 𝑋𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡
−, 𝑋𝑇 ∼ 𝑝target

Align

a simple function, e.g., 0

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡 − 𝜎𝑡

2∇log𝑞𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡
−, 𝑋𝑇 ∼ 𝑞𝜃(⋅, 𝑇) 

time-reversal



Simulation-free training of Diffusion Neural samplers 

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡 + 𝜎𝑡

2∇log𝑞𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡, 𝑋0 ∼ 𝑝prior 

d𝑋𝑡 = 𝑔 𝑋𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡
−, 𝑋𝑇 ∼ 𝑝target

Align

a simple function, e.g., 0

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡 − 𝜎𝑡

2∇log𝑞𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡
−, 𝑋𝑇 ∼ 𝑞𝜃(⋅, 𝑇) 

time-reversal

same direction – Girsanov Theorem applicable 



Simulation-free training of Diffusion Neural samplers 

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡 + 𝜎𝑡

2∇log𝑞𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡, 𝑋0 ∼ 𝑝prior 

d𝑋𝑡 = 𝑔 𝑋𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡
−, 𝑋𝑇 ∼ 𝑝target

Align

a simple function, e.g., 0

d𝑋𝑡 = 𝜕𝑡𝐹𝜃 𝐹𝜃
−1(𝑋𝑡, 𝑡), 𝑡 d𝑡 − 𝜎𝑡

2∇log𝑞𝜃 𝑋𝑡, 𝑡 d𝑡 + 𝜎𝑡 2d𝑊𝑡
−, 𝑋𝑇 ∼ 𝑞𝜃(⋅, 𝑇) 

time-reversal
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simulation-free evaluation – can always obtain sample by 1-step 𝑋𝑡 = 𝐹𝜃 𝑍, 𝑡 , 𝑍 ∼ 𝑝base
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Simulation-free training of Diffusion Neural samplers 

initialization after training

Why?

Objective?  same as DDS 

Capacity?  target is so simple

Network parameterization? might be the reason
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b. CMCD/NETS
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⋅ 𝑝target
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What if we remove this Langevin?



How to remove Langevin?

b. CMCD’s Optimality condition (Nelson’s relation)

𝑫(𝐐
𝜽

𝒑
𝐩𝐫𝐢𝐨𝐫, 𝑓𝜃+𝜎𝑡

2∇ log 𝜋𝑡 , 𝐏
𝜃

𝒑
𝐭𝐚𝐫𝐠𝐞𝐭, 𝑓𝜃−𝜎𝑡

2∇ log 𝜋𝑡 )

𝑫(𝐐
𝜽

𝒑𝐩𝐫𝐢𝐨𝐫, 𝑓𝜃 , 𝐏
𝜃

𝒑
𝐭𝐚𝐫𝐠𝐞𝐭, 𝑓𝜃−2𝜎𝑡

2∇ log 𝜋𝑡 )

But it is not necessary!

a. DDS

𝑓𝜃 ⋅, 𝑡 = NN1,𝜃 ⋅, 𝑡 + NN2,𝜃 𝑡 ∘ ∇ log 𝑝target(⋅)
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Empirical Results

DDS w/o Langevin for GMM-3:

KL                                                                LV                                                         TB 



Empirical Results
c. How about sample efficiency?



Empirical Results
d. PINN objective is different

1. different interpolant
2. different prior size
3. “consistent” behavior
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SOTA MCMC in MD simulation

 Highly parallel 

high temperature
𝑝target

1/temp

low temperature
𝑝target



Parallel Tempering/Replica Exchange

Correlated samples

Need more simulation for new samples 

Different use from neural samplers…
high temperature
𝑝target
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Parallel Tempering/Replica Exchange

Correlated samples

Need more simulation for new samples 

Generative models can easily address them!
But is it worth it? 

Different use from neural samplers…
high temperature
𝑝target

1/temp

low temperature
𝑝target



Parallel Tempering/Replica Exchange

high temperature
𝑝target

1/temp

low temperature
𝑝target



Discussion & Takeaway

1. We should not hide Langevin gradient used

2. If we need Langevin gradient anyway, we need to talk about sample 
efficiency (we should also be open to initialize using data)

3. Improving PT is a promising direction (solve challenges with neural 
network ansatz)

4. Better prior, interpolant, explorative objectives still needed
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