No Trick i, No Treat G

Pursuits and Challenges Towards Simulation-free Training of Neural Samplers

Jiajun He*¹, Yuanqi Du*², Francisco Vargas^{1,3}, Dinghuai Zhang⁴, Shreyas Padhy¹, RuiKang OuYang¹, Carla Gomes², José Miguel Hernández-Lobato¹ *Equal Contribution ¹ University of Cambridge ² Cornell University ³ Xaira Therapeutics ⁴ Microsoft Research

What are Diffusion Neural Samplers?

Learn an underlying process evolving $p_{\text{prior}} \rightarrow \exp(-U)/Z$: $dX_t = f_t(X_t)dt + \sigma_t dW_t, X_0 \sim p_{\text{prior}}$

be time-reversal of a target process:

 $dX_t = f_t(X_t)dt + \sigma_t dW_t, X_1 \sim \exp(-U)/Z$ **Time-reversal sampler**

 \mathbb{P} map between interpolants from prior to $\exp(-U)/Z$.

Escorted transport sampler Matching the forward and backward process: KL, LV, TB, STB, DB, etc. Matching the forward with marginal interpolants:

Score matching, PINN, AM, etc.

Sampling:

		Path measure alignment				Marginal alignment		
		KL	LV	(S)TB	DB	PINN	AM	Score Estimate
Time- reversal – sampler	Reversal of	DDS,	DDS-LV,			PINN		RDMC*,
	VP/VE SDE	DIS	DIS-LV					iDEM
	Reversal of PBM	PIS	PIS-LV	DGFS	DGFS			SFS*
Escorted transport sampler		CMCD	CMCD			PINN, NETS, LFIS	NETS	

Simulation-free Neural Samplers?

Can we skip the expensive simulation in training? Y **Time-dependent normalizing flow**

Same objective as DDS, and allows to jump to any time step to evaluate objective without simulation

t = 0.0 t = 0.8 t = 1.0 0.5 0.5 2.5 target 0.0 0.0 0.0 model -2.5 --0.5 -0.5 -2.5 0.0 2.5 0 $^{-1}$ 0

(a) Initialization of NF-DDS, samples generated at different time steps 0, 0.8, 1.0. As we can see, the initialization already covers all modes.

Trick Counts!

(b) NF-DDS after training with Equation (13), samples generated at different time steps 0, 0.8, 1.0. Unlike DDS, NF-DDS fails to capture all modes.

Same objective as DDS, why mode collapse?

Langevin preconditioning:

mode interpolate, prior $N(0, 30^2 I)$ mode interpolate, prior N(0, 2I)

Sample Efficiency Matters!

Key Takeaways:

Langevin Preconditioning is crucial for many approaches Target evaluation times are important yet not widely reported Efficiency of train-to-sample v.s. sample-to-train is worth exploring