publications

(*) denotes equal contribution

2024

  1. dikl_preview.gif
    Training Neural Samplers with Reverse Diffusive KL Divergence
    Jiajun He*, Wenlin Chen*, Mingtian Zhang*, and 2 more authors
    2024
  2. bitsback.png
    Getting Free Bits Back from Rotational Symmetries in LLMs
    Jiajun He, Gergely Flamich, and José Miguel Hernández-Lobato
    2024
  3. is_cm.png
    Efficient and Unbiased Sampling of Boltzmann Distributions via Consistency Models
    Fengzhe Zhang*Jiajun He*, Laurence I. Midgley, and 2 more authors
    In Workshop on Machine Learning and the Physical Sciences @ NeurIPS, 2024
  4. preview_rec.gif
    Accelerating Relative Entropy Coding with Space Partitioning
    Jiajun He, Gergely Flamich, and José Miguel Hernández-Lobato
    In Advances in Neural Information Processing Systems (NeurIPS), 2024
  5. bcm.png
    Bidirectional Consistency Models
    Liangchen Li*, and Jiajun He*
    In Workshop on Structured Probabilistic Inference & Generative Modeling @ ICML, 2024
  6. recombiner.png
    RECOMBINER: Robust and Enhanced Compression with Bayesian Implicit Neural Representations
    Jiajun He*, Gergely Flamich*, Zongyu Guo, and 1 more author
    In International Conference on Learning Representations (ICLR), 2024

2023

  1. combiner.png
    Compression with bayesian implicit neural representations
    Zongyu Guo*, Gergely Flamich*Jiajun He, and 2 more authors
    In Advances in Neural Information Processing Systems (NeurIPS), 2023
  2. thesis.png
    Data Compression with Variational Implicit Neural Representations
    Jiajun He
    University of Cambridge, 2023